首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Properties of a new stainless austenitic steel with improved tensile strength The paper presented a new nitrogen-alloyed stainless austenitic steel-grade X 4 CrNiMnN 18 6 3 with improved strength compared with grade 1.4306 as concerns: mechanical properties at room and elevated temperature, intercrystalline corrosion, corrosion rate in solutions of nitric, hydrochloric and sulfuric acids, weldability. Essential increase of mechanical properties in steel-grade X 4 CrNiMnN 18 6 3 compared with traditional 18Cr8Ni steels, without change in corrosion resistance and weldability was achieved by addition of nitrogen (0,11–0,26%).  相似文献   

2.
Corrosion of stainless austenitic steels in almost anhydrous acetic acid As-welded samples and looped specimens from 5 differently alloyed stainless steels were tested for up to 246 days in 99,5% to 99,95% acetic acid at 118°C (boiling temperature/normal pressure) and at 150°C; the chloride content was varied between < 1 and 100 ppm. Pitting corrosion – of shallow depth, however (approx. 0,1 mm) – was already observed at surprisingly low chloride concentrations. Only the following were found to be resistant to pitting corrosion:
  • – stainless steels 1.4439 and 1.4539, containing approx. 4,5% molybdenum, in 99,5% acetic with < 1 ppm chloride at 118 and 150°C,
  • – stainless steels 1.4439 and 1.4539 in 99,9% acetic acid with < 1 ppm chloride at 118°C, and
  • – special stainless steel X 2 CrNiMoCuN 20 18 6, containing approx. 6% molybdenum, in 99,5% acetic acid with > 3, < 10 ppm chloride at 118 and 150°C.
Looped specimens and ground as-welded samples showed no sensitivity to transcrystalline, chloride-induced stress corrosion cracking at any of the concentration ranges. High surface-removal rates can be expected if air has access to the specimens; under this condition pitting corrosion and general corrosion may overlap. Contamination of acetic acid with chlorides must be prevented under all circumstances.  相似文献   

3.
Surface treatment as corrosion protection measure of stainless steels The pickling behaviour of several stainless austenitic steels and of one steel with ferritic/austenitic grain structure were investigated in pickling solutions of different compositions based on hydrofluoric acid. Because of uncertainties in practical applications, the influence of temperature, time and acid content on the mass loss is of high interest. In another series of experiments, aqueous solutions of citric acid were tested for their suitability as pickling chemicals for the materials X 6 CrNiTi 18 10 (AISI 321) and X 6 CrNiMoTi 17 12 2 (AISI 316 Ti). Finally, the pickling procedures based on nitric acid/hydrofluoric acid mixtures were compared with mechanical cleansing methods and with pickling procedures based on aqueous citric acid solutions as well, to elucidate their influence on the corrosion resistance of the treated materials. The valuation followed a pitting corrosion test in sodium chloride solutions of different concentrations after Herbsleb and Schwenk. Pickling with hydrofluoric acid solutions is superior to other cleansing procedures, if corrosive environments are present. The ecologically beneficial citric acid solutions are only able to remove the annealing colours from stainless steels.  相似文献   

4.
Corrosion behaviour of high chromium ferritic stainless steels Ferritic steels developed for seawater desalination and containing 20 to 28% chromium, up to 5% Mo and additions of nickel and copper have been tested with respect to their corrosion behaviour, in particular in chloride containing media. The materials in the sensibilized state were tested for inter-crystalline corrosion susceptibility in the Strauß-, Streicher-, nitric acid hydrofluoric acid- and Huey-Tests. No intercrystalline corrosion was encountered in the case of the steels with 28% Cr and 2% Mo. The resistance to pitting was assessed on the basis of rupture potentials determined by potentiokinetic tests. The resistance of the steels with 20% Cr and 5% Mo or 28% Cr and 2% Mo is superior to that of the molybdenum containing austenitic types. Addition of nickel yields a significant increase in crevice corrosion resistance; the same applies to resistance in sulfuric acid. In boiling seawater all the materials tested are resistant to stress corrosion cracking. No sign of any type of corrosion was found on nickel containing steels after about 6000 hours exposure to boiling 50% seawater brine even under salt deposits.  相似文献   

5.
Corrosion resistance of installation elements of stainless austenitic chromium-nickel steels at high temperatures The test results presented prove the statements made in DIN 50 929 Part 2. In accordance with DIN 50 930 Part 4, the corrosion probability for stainless steels increases when chloride containing water evaporates on warm material surfaces, whereby chloride ions concentrate. Under these conditions, ferritic chromium steels and austenitic chromium-nickel steels can suffer pitting corrosion, austenitic chromium-nickel steels also stress corrosion cracking. In the latter case, the corrosion cracks start from pits. The molybdenum-containing material no. 1.4571 withstands pitting and stress corrosion cracking in wet, chloride-containing environments at 90°C over some weeks. With increasing exposure time and at temperatures above 45°C, however, corrosion damage cannot be excluded. Then, according to DIN 50 929 Part 2, coating of the external surfaces of installation components, e.g., tubes, is required. The coating must be thick, free from pores and holidays, and resistant to heat and aging.  相似文献   

6.
Corrosion resistance of austenitic and ferritic stainless alloys in 20 to 75% nitric acid as a function of temperature and concentration A series of stainless austenitic and ferritic materials was exposed for 100 days to boiling nitric acid which contained no corrosion products; the corrosion rates and depths of the grain boundary attack were observed. Provided the structure is precipitation-free, the following are suitable for long-term exposure; the austenitic steels X 2 CrNi 1912, X1 CrNi 25 21, X1 CrNiMoN 25 222 and X1 NiCrMoCu31274, the practically Mo-free and Cu-free development steel X1 NiCr31 27, and the highly Mo-alloyed variant X1 NiCrMoCu 31275. In the case of alloy NiCr21 Mo it is advisable to limit the concentration and/or the temperature of the nitric acid. The “superferrite” X1CrNiMoNb2842, the Japanese steel X1 CrNiNb 30 2 and the austenitic steels X2 CrNiMoN 1713 3 and X1 CrNiMoN 25 22 2 in the version with high nickel content are unsuitable. Thus, as an alloying element, molybdenum does not always impair the resistance of stainless steels to nitric acid. The decisive factor affecting the corrosion rates is the chromium content of the material. The temperature-dependent function of the corrosion in azeotropic nitric acid conforms to Arrhenius relations. The concentration-dependent function of the corrosion in 20 to 75 (80)% nitric acid can be described by a hyperbolic equation. An exception is formed by X1 CrNiSi 1815; here the corrosion rate increases with the concentration of the acid until the azeotropic point is reached; then, owing to the formation of a surface film, it falls until the acid becomes highly concentrated.  相似文献   

7.
Corrosion Properties of High Alloyed Stainless Steels in Pure as well as in Chloride Containing Sulfuric Acid The corrosion behaviour of the high alloyed stainless steels material no. 1.4439 (X3CrNiMoN17135), 1.4539 (X2NiCrMoCu25205), 1.4503(X3NiCrMoCuTi2723) as well as the reference materials AlSI 316 L and alloy 825 was tested in diluted sulfuric acid (5, 10, 20 and 50%) at 50, 100 and 150°C. The test solutions additionally contained impurities as chlorides and cupric ions. On the material side the effect of various microstructures was checked as well: material as received (commercial production), solution annealed under laboratory conditions, cold deformed and for two selected steels electroslag remelted. Corrosion testing methods are: the immersion test will sheet coupons and the measurement of the weightloss; electrochemical testing, i.e. Current potential-and free corrosion potential-time-curves. No pitting corrosion is observed in the presence of chloride ions. In some cases the general corrosion rate is lowered if chloride ions are present. This beneficial effect of chloride ions, however, is observed only at low chloride concentrations (500 ppm). Annealing under laboratory conditions as well as electroslag remelting does not generally improve the corrosion resistance. A negative effect by cold deformation is only observed for standard stainless steel AlSI 316. Cupric ions added to the 20% sulfuric acid solution improve the corrosion resistance of all steels investigated to that extent, that they can be used in practice up to 100°C provided that the concentration of cupric ions in the solution is sufficiently high (2000 ppm). Electrochemical test results indicate that the positive effect of cupric ions is due to the shift of the free corrosion potential into the potential range of stable passivity. Copper alloyed stainless steels show the highest corrosion resistance.  相似文献   

8.
Surface treatments of high alloy 6 Mo stainless steel and nickel alloy weldments High alloy stainless steels (6% Mo) and a high nickel alloy (alloy 625) weldment have been tested in order to answer the question whether post-treatment of the weldment has an effect on the corrosion resistance, especially on pitting corrosion. Therefore, the critical pitting temperature of weldments was tested in acidic chloride solution (standard tests). As a result grinding with rough emery paper as well as sand blasting lowers the localized corrosion resistance in the weldment area, while pickling has a positive effect, especially after blasting. Pickling can be done either by a solution of nitric + hydrofluoric acid or by a commercial pickling paste. In any event pickling is recommended as a final surface treatment for high alloy stainless steels and nickel alloys, especially in case of prevailing highly corrosive conditions such as pitting and crevice corrosion.  相似文献   

9.
A diagnostic investigation has been carried out on some AISI type 316 stainless steel fixation nails that failed during service in the recovery treatment of femoral fractures. The association of pitting and cracking at the nail edges where the cracking process appears to start together with fractographic features of the ruptured surfaces has led to the belief that pitting in crevice-induced stress corrosion cracking from acid chlorides is the cause of failure. In this respect, consideration should be given to the new high-Cr ferritic stainless steels, extra-low in interstitial elements, which are much more resistant than ordinary austenitic grades to pitting and s.c.c. in chloride media.  相似文献   

10.
Corrosion problems in chloride containing media: possible solution by some stainless special steels The increasing water pollution forces the chemical industry to use water with increasing chloride content for cooling and other purposes. This trend brings about increasing corrosion danger, in particular pitting, stress corrosion cracking and corrosion fatigue as well as crevice corrosion. The present paper deals with some steels characterized by resistance to these specific corrosion phenomena. A steel containing (%) 21 Cr., 7.5 Ni, 2.5 Mo, 1.5 Cu, to 2 Mn, to 1 Si and 0.06 C is particularly resistant to stress corrosion cracking. It contains 30 to 50% ferrite in an austenitic matrix. Even in Mg chloride solutions it may be kept under a load of 7 kg/mm2 without stress corrosion occurring (with a steel of the 18 10 CrNiMo type the admissible load is only 2 kg/mm2). A steel containing (%) 25 Ni, 21 Cr, 4.5 Mo, 1.5 Cu, to 1 Si, to 2 Mn, and 0.02 C has a broad passivity range and is resistant to general corrosion in acid reducing media and phosphoric acid of all concentrations. A ferritic steel containing (%) 26 Cr. 1 Mo and minor additions of C, Mn, Si, Cu, Ni and nitrogen is resistant to stress corrosion cracking in neutral chloride solutions and general corrosion in oxidizing and neutral media, even against hydrogen sulfid and organic acids; it is beyond that lergely resistant to pitting in chloride solutions.  相似文献   

11.
Stress-corrosion resistant stainless manganese chromium steels The following conclusions may be drawn from the results of investigations into the stress corrosion cracking of austenitic and austeno-ferritic MnCr steels (19–22Mn, 13–18Cr, additions of Mo, V, Nb, Ti, N, B): Addition of nitrogen gives rise to a decrease of stress corrosion cracking resistance in magnesium chloride, sodium chloride with potassium dichromate and water at high temperatures. The same applies to the influence if nickel on corrosion in magnesium chloride and water, and for molybdenum in magnesium and sodium chlorides. From among laboratory melts the type 05 Mn 19Cr 13 had the highest resistance, followed by its modifications with additions of boron, vanadium, molybdenum, titanium, niobium and nitrogen. From among the semi-technical melts the nitrogen containing steels turned out to be least resistant, too. During further investigations the chromium level of 13% turned out to be insufficient to prevent pitting in sodium chloride solutions including seawater.  相似文献   

12.
Corrosion behaviour of some cast stainless steels and high alloy white irons in scrubber solutions of flue gas desulfurization plants Weight loss and electrochemical measurements have been used to determine the ranges of applicability of cast austenitic stainless steel Werkstoff No. 1.4408, of two special cast ferritic-austenitic stainless steels NORIDUR® 9.4460 and NORICLOR® NC 24 6 and of two high alloy Cr and CrMo white irons in scrubber solutions of Flue Gas Desulfurization (FGD) plants. Whereas the Werkstoff No. 1.440 8 cannot be used due to its insufficient resistance to general and localized corrosion, NORIDUR® 9.4460 can be used in scrubber solutions with pH > 2.5 and chloride concentrations up to 80 g/l, NORICLOR® NC 24 6 with 5% Mo even in liquids with pH > 1.5 and chlorides up to 100 g/l. At lower pH-values both duplex stainless steels show active corrosion of either the austenite or the ferrite depending on the contents of hydrochloric acid in the solution. At higher chloride concentrations pitting occurs on the passive materials. The CrMo white iron NORILOY NL 25 2 with 25% Cr and 2% Mo can be used in scrubber liquids with pH > 3.5. As the ferritic matrix is cathodically protected by the precipitated carbides, there is no sensitivity of this alloy to chlorides. In liquids with pH < 3.5 there is selective corrosion of the ferritic matrix. For practical application of all these cast alloys the limits for purely corrosive attack have to be modified to assure. resistance to a superposition of corrosion, erosion/abrasion and cavitation on parts exposed to real flow conditions in FGD scrubbers.  相似文献   

13.
The influence of chloroacetyl chlorides and chloroacetic acids on the corrosion of metals in trichloroethylene and tetrachloroethylene The corrosive behaviour of selected stainless steels, nickel, copper and zinc materials in trichloroethylene and tetrachloroethylene containing dichloroacetic acid and dichloroacetyl chloride or trichloroacetic acid and trichloroacetyl chloride in concentrations between 100 and 10000 ppm from room temperature to the boiling point was investigated. NiCu 30 Fe was resistant in all systems investigated. Only tetrachloroethylene containing trichloroacetyl chloride corroded the stainless steels. Corrosion rates up to 0.07 mm/y and a tendency towards pitting corrosion were detected. Trichloroethylene containing dichloroacetic acid proofed aggressive towards Cu-DHP, CuZn 15, and CuSn 6. Corrosion rates between 0.14 and 0.32 mm/y were observed. Tetrachloroethylene containing trichloroacetic acid was far less corrosive towards copper materials. In tetrachloroethylene, containing trichloroacetyl chloride, of the copper materials investigated, CuZn 15 and CuAl8 were relatively strongly attacked (corrosion rate 0.10 mm/y). Of the investigated materials, Zn 99.95 was the least resistant to corrosion. Solutions containing acids and acid chlorides proofed to be the most aggressive with corrosion rates between 0.56 and 0.66 mm/y. Some corrosion products, developed on the metal surfaces, were analysed.  相似文献   

14.
Pitting corrosion of austenitic chromium nickel and chromium nickel molybdenum steels in sulfuric acid containing bromides, and its inhibition nitrate ions In acidified bromide solution CrNi steels are attacked under pitting when a certain critical potential has been exceeded; this potential is higher than in the case of chloride containing solutions. Bromides are, consequently, less active than chlorides, but the pit density is considerably higher under idential corrosion conditions. While the pitting corrosion in chloride solutions can be considerably reduced by molybdenum addition to the steel, this effect is but little pronounced in the case of bromide solutions (with Mo additions up to 4% the potential is displaced by 0.2 V toward positive values). Mo additions around 2% are even dangerous since the pitting density is considerably increased in that range. Similar to the conditions in chloride solutions corrosion in bromide solutions is inhibited by nitrate additions; the potential limit is considerably higher in the bromide solution; this phenomenon points to stronger adsorption of bromide ions at the metal surface.  相似文献   

15.
The use of stainless steel bars in reinforced concrete structures may be an effective method to prevent corrosion in aggressive environments where high amounts of chlorides may penetrate in the concrete cover. For an estimation of the service life of structures where stainless steel bars are used, the chloride threshold for these rebars should be defined, and the influence of chemical composition and metallurgical factors that may affect the corrosion resistance (strengthening, welding, etc.) should be assessed. To reduce the cost of stainless steel reinforcement, duplex stainless steels with low nickel content have been recently proposed as an alternative to traditional austenitic steels, even though, few results are available regarding their corrosion performance in chloride contaminated concrete. This paper deals with the corrosion resistance of low‐nickel duplex stainless steel rebars (1.4362 and 1.4162) as a function of the chloride content. Comparison is made with traditional austenitic steels. An attempt to define a chloride threshold for the different stainless steels is made by comparing the results of several test procedures both in concrete and in solution.  相似文献   

16.
Cooling water side corrosion resistance of high alloyed materials for handling of process side sulfuric acid The approved materials for use in sulfuric acid alloy 825 (German material No. 2.4858) and alloy 20 (German mater. No. 2.4660) have only a low resistance against localized corrosion in chloride containing water and are unsuitable for handling of sulfuric acid. The newly developed austenitic Cr-base alloy, alloy 33, (X1CrNiMoCuN 33-32-1, German mater. No. 1.4591) with 33 % Cr, 31 % Ni, 0,6 % Mo and 0.4 % N should have an excellent resistance against pitting and crevice corrosion additional to its high sulfuric acid resistance, too, because its Pitting Resistance Equivalent No. calculated according to PREN = %Cr + 3,3 · %Mo + 30%N runs to 50. Pitting and crevice corrosion properties of the alloy 33 are tested in comparison to those of reference materials in high chloride containing solutions (1M NaCl, artificial and modified sea water, 10% FeCl3 · 6H2O; 500 g/l CaCl2 ). Pitting potentials and potentials of repassivation of pitting, critical temperatures of localized corrosion (FeCl3-test, CaCl2-test, artificial sea water), potentials of repassivation of crevice corrosion as well as depassivation pH values of crevice corrosion following Crolet have been determined. The results confirm that the localized corrosion behaviour of the alloy 33 corresponds to its PREN. With regard to pitting corrosion alloy 33 is comparable with the special stainless steel alloy 31 (mater. No. 1.4562), with regard to crevice corrosion it is comparable with alloy 926 (German mater. No. 1.4529).  相似文献   

17.
Production and properties of nitrogen alloyed, corrosion resistant steels and special steels with low carbon contents Alloying with nitrogen has favourable influence in particular on the mechanical properties of CrNiMo steels (X 2 CrNiMoN 17 12, materials No. 1.4406, X 2 CrNiMoN 17 13 5, materials No. 1.4439 und X 2 CrNiMoN 22 5, materials No. W.-Nr. 1.4462). This comes to bear when ambient temperature and low temperature strength and toughness are concerned. With respect to the corrosion behaviour the data concerning the effect of nitrogen are contradictory. It has become clear that nitrogen improves pitting corrosion resistance; this applies, however, only to pit initiation but not to pit growth. Stress corrosion cracking is not delayed by nitrogen but different results have been obtained with different media: while the duplex steel X 2 CrNiMoN 22 5 is attacked considerably faster than the corresponding nitrogen-free steel in 42% boiling magnesium chloride solution the time-to-failure of both steels are comparable in 30% boiling MgCl2-solution. The nitrogen alloyed steels can be welded by all known welding procedures, provided fully austenitic welding rods are used.  相似文献   

18.
The effect of chloride ions' presence (0·005–1·0M NaCl) in phosphoric acid solutions (5, 40 and 75%) on the corrosion behaviour of three austenitic stainless steels (an experimental steel Fe–18Cr–12Mn–0·6N and two trade grades, Fe–18Cr–9Ni and Fe–14Cr–15Mn–0·2N) has been studied by potentiodynamic polarisation measurements. The surface examinations of the samples tested involved X-ray photoelectron spectroscopy as well as optical and scanning electron microscopy. It was established that chlorides added to phosphoric acid solutions deteriorate the general corrosion resistance, and under anodic polarisation, they provoke pitting corrosion. The composition of the stainless steels significantly influences its corrosion behaviour in the phosphoric acid solutions containing chloride ions. The replacement of nickel with manganese and nitrogen on top of lower chromium content has a strong negative effect on the corrosion resistance.  相似文献   

19.
Experience with prestressed concrete over about half a century has indicated that the corrosion resistance of conventional prestressing steel does not always satisfy, especially the prestressing steels are susceptible to chloride attack (de‐icing salts) and hydrogen (hydrogen‐induced stress corrosion cracking). On the other hand corrosion agents, such as chloride, condensation water, can penetrate in the concrete and arrive at the surface of steels. Hence, corrosion damage of prestressing steels can happen and, in the extreme cases, the prestressed concrete structure collapsed resulting from the failure of the tendon. In this paper, consideration is made to use high‐strength stainless steels as prestressing tendon with bond in concrete. The high‐strength stainless steels of qualities 1.4301 (X5CrNi18‐10), 1.4401 (X5CrNiMo17‐12‐2), 1.4436 (X3CrNiMo17‐13‐3) and 1.4439 (X3CrNiMoN17‐13‐5) with sequence of increasing austenite stability were investigated. For application in prestressing tendon with bond in concrete the cold‐drawn high‐strength stainless steel of quality 1.4401 is an optimal proposition regarding its satisfactory resistance against pitting corrosion and stress corrosion cracking (SCC) in structure‐related corrosive conditions. The lower alloyed steel 1.4301 has an insufficient resistance against the chloride‐induced corrosion because of the lack of molybdenum and the content of deformation martensite due to the strong cold‐drawing of its unstable austenitic structure.  相似文献   

20.
Following the success of forming a carbon S-phase (expanded austenite) surface layer on medical grade Ni-free austenitic stainless steel by DC plasma carburising, the established commercial carburising process Kolsterising® was performed on both Ni-containing (AISI 304) and Ni-free austenitic stainless steels. While the Ni-containing stainless steel responded very well to Kolsterising®, the Ni-free alloy did not. The carbon absorption and the hardness of the Kolsterised® Ni-free alloy are inferior to Kolsterised® AISI 304 Ni-containing stainless steel, however, the hardness of the untreated Ni-free alloy was doubled by Kolsterising®. The response of both Kolsterised® Ni-free and Ni-containing alloys to pitting, crevice corrosion and intergranular corrosion resistance was similar. From this work it can be concluded that the Kolsterised® austenitic stainless steels do not suffer from intergranular corrosion but are susceptible to intragranular pitting when tested in boiling sulphuric acid and copper sulphate solution. It was also observed that Kolsterising® improves significantly the pitting and crevice corrosion resistance of the alloys used in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号