首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fatigue crack growth resistance of a [0/90°]2s cross-ply SCS6 fibre-reinforced Ti–6Al–4V alloy metal-matrix composite has been assessed under displacement range control (i.e. under load shedding conditions with crack extension) to investigate potential fibre degradation and the process of crack extension at room temperature, and at 450°C, in air and in vacuum. Attention is focused on initial conditions that will promote crack arrest at room temperature. Under the test conditions employed here, regions of crack growth can occur where the applied nominal stress intensity factor range (ΔK) is relatively constant. This 'constant'ΔK range is the result of a fortuitous balance between the particular test-piece geometry, loading conditions utilized, matrix crack growth and the rate of fibre fracture. It allows the influence of environment, cyclic frequency and temperature on fatigue crack growth resistance to be analysed more easily than for tests carried out under load control.
The crack growth rate remained almost constant but with some steep local retardations in growth rate in the constant ΔK region at a temperature of 450°C, while crack arrest occurred at room temperature for the same initial ΔK. The average crack propagation rate in this 'constant ΔK region' at a temperature of 450°C in air was much greater than that at a temperature of 450°C in vacuum. This indicates that environment plays an important role in the process of fibre degradation. The effect of cyclic frequency is saturated at a frequency of less than 1  Hz. The process of crack growth at various frequencies is also discussed.  相似文献   

2.
The effect of microstructure on the fatigue properties of Ti–6Al–2.5Mo–1.5Cr alloy was investigated. The experimental results for both the fatigue crack initiation and propagation behaviour, as well as the dynamic fracture toughness ( K Id ) showed clearly that a lamellar microstructure is superior to two other structures. It was found that, as in the case of steels, the initiation and subsequent growth of cracks in the titanium specimens with a sharp notch may also occur on loading levels below the threshold values of the K factor (Δ K th ) determined for long fatigue cracks. In addition, measurements by interferential-contrast of the plastic zone size on the surface of specimens revealed that the different rate of crack growth at identical values of Δ K in individual structural states can roughly be correlated with the size of the plastic zone. A general relationship between the fatigue crack growth rate and plastic zone size, the modulus of elasticity and the role of crack tip shielding is discussed.  相似文献   

3.
Fatigue crack growth below the conventional fatigue limit was examined in Ti–6Al–4V in two different microstructural conditions, bi-modal and fully lamellar. Tests conducted at R = −1, at room temperature and in air showed that there is a stress dependency in the d a /d N –Δ K behaviour in both microstructures. The increasing crack front roughness associated with increasing crack size results in a decrease in the crack growth rate relative to the crack growth rate in a single grain. The d a /d N vs. Δ K lines were drawn for each crack size and a 'threshold'Δ K was determined using the intercept of the lines with d a /d N = 10−10 m cycle−1. These values were used to construct modified Takahashi–Kitagawa diagrams to predict microcrack growth below the fatigue limit for each microstructure. A comparison of the two microstructures indicated differences in behaviour in microcrack and macrocrack growth that were explained by differences in crack front roughness at a given crack size.  相似文献   

4.
A multiparameter approach is proposed for the characterization of fatigue crack growth in metallic materials. The model assesses the combined effects of identifiable multiple variables that can contribute to fatigue crack growth. Mathematical expressions are presented for the determination of fatigue crack growth rates, d a /d N , as functions of multiple variables, including stress intensity factor range, Δ K , stress ratio, R , crack closure stress intensity factor, K cl , the maximum stress intensity factor K max , nominal specimen thickness, t , frequency, Ω , and temperature, T . A generalized empirical methodology is proposed for the estimation of fatigue crack growth rates as a function of these variables. The validity of the methodology is then verified by making appropriate comparisons between predicted and measured fatigue crack growth data obtained from experiments on Ti–6Al–4V. The effects of stress ratio and specimen thickness on fatigue crack growth rates are then rationalized by crack closure considerations. The multiparameter model is also shown to provide a good fit to experimental data obtained for HY-80 steel, Inconel 718 polycrystal and Inconel 718 single crystal. Finally, the implications of the results are discussed for the prediction of fatigue crack growth and fatigue life.  相似文献   

5.
The fatigue crack propagation behavior of Ti–5Al–2.5Fe with various microstructures for biomedical applications was investigated in air and in a simulated body environment, Ringer's solution, in comparison with that of Ti–6Al–4V ELI and that of SUS 316L stainless steel. The crack propagation rate, da/dN, of Ti–5Al–2.5Fe in the case of each microstructure is greater than that of the Widmanstätten structure in Ti–6Al–4V ELI in air whereas da/dN of Ti–5Al–2.5Fe is nearly equal to that of the equiaxed structure in Ti–6Al–4V ELI in air when da/dN is plotted versus the nominal cyclic stress intensity factor range, ΔK. da/dN of the equiaxed structure and that of the Widmanstätten structure in Ti–5Al–2.5Fe are nearly the same in air when da/dN is plotted versus ΔK. da/dN of Ti–5Al–2.5Fe is nearly equal to that of SUS 316L stainless steel in the Paris Law region, whereas da/dN of Ti–5Al–2.5Fe is greater than that of SUS 316L stainless steel in the threshold region in air, when da/dN is plotted versus ΔK. da/dN of Ti–5Al–2.5Fe or Ti–6Al–4V ELI is nearly the same in air and in Ringer's solution when da/dN is plotted versus the effective cyclic stress intensity factor range, ΔKeff, whereas da/dN of Ti–5Al–2.5Fe or Ti–6Al–4V ELI is greater in Ringer's solution than in air when da/dN is plotted versus ΔK.  相似文献   

6.
Abstract Renewed interest in utilizing titanium at elevated temperature has led to the development of creep resistant near α-alloys. Present work is concerned with the fatigue crack growth characteristics of one such alloy, Ti–6Al–2Sn–4Zr–2Mo–0·1Si, as a function of temperature, environment, and processing history. Increasing crack growth rates were observed in the order, vacuum (298K), vacuum (811K), air (298K), and air (811K). An empirical expression based upon crack opening displacement considerations was found to fit the crack growth data in all but the air (811K) test. The pronounced increase in growth rates in air at 811K, particularly at low ΔK, was caused by oxidation, whereas the increase in growth rates at 811K in vacuum was the result of a decrease in modulus. Processing variables and test frequency had little effect on crack growth rates.  相似文献   

7.
A shear stress-based parameter for fretting fatigue crack initiation   总被引:1,自引:0,他引:1  
The purpose of this study was to investigate the fretting fatigue crack initiation behaviour of titanium alloy, Ti–6Al–4V. Fretting contact conditions were varied by using different geometries of the fretting pad. Applied forces were also varied to obtain fretting fatigue crack initiation lives in both the low- and high-cycle fatigue regimes. Fretting fatigue specimens were examined to determine the crack location and the crack angle orientation along the contact surface. Salient features of fretting fatigue experiments were modelled and analysed with finite element analysis. Computed results of the finite element analyses were used to formulate a shear stress-based parameter to predict the fretting fatigue crack initiation life, location and orientation. Comparison of the analytical and experimental results showed that fretting fatigue crack initiation was governed by the maximum shear stress, and therefore a parameter involving the maximum shear stress range on the critical plane with the correction factor for the local mean stress or stress ratio effect was found to be effective in characterizing the fretting fatigue crack initiation behaviour in titanium alloy, Ti–6Al–4V.  相似文献   

8.
The effects of inducing artificial crack closure into fatigue cracks in AISI 304 stainless steel by infiltrating foreign materials have been investigated. The foreign materials used include pure epoxy resin and resin mixed with 0.3  μm and 4  μm TiO2 , 4  μm Fe, as well as 18  μm AISI 316L stainless steel. In all the cases studied, different degrees of crack growth retardation have been achieved. When the particle size was small enough or when the prop-opening load for infiltration was large enough, crack arrest occurred. Crack retardation and arrest were mainly caused by the infiltrated material rather than the propping load. A rigid-wedge model was found to have limited value in predicting the possible outcome of an infiltration. On the other hand, the degree of crack closure immediately on resumption of a test after infiltration could tell whether the treatment was going to be successful or not.  相似文献   

9.
The effect of hydrogen on the fatigue properties of alloys which are used in fuel cell (FC) systems has been investigated. In a typical FC system, various alloys are used in hydrogen environments and are subjected to cyclic loading due to pressurization, mechanical vibrations, etc. The materials investigated were three austenitic stainless steels (SUS304, SUS316 and SUS316L), one ferritic stainless steel (SUS405), one martensitic stainless steel (0.7C-13Cr), a Cr-Mo martensitic steel (SCM435) and two annealed medium-carbon steels (0.47 and 0.45%C). In order to simulate the pick-up of hydrogen in service, the specimens were charged with hydrogen. The fatigue crack growth behaviour of charged specimens of SUS304, SUS316, SUS316L and SUS405 was compared with that of specimens which had not been hydrogen-charged. The comparison showed that there was a degradation in fatigue crack growth resistance due to hydrogen in the case of SUS304 and SUS316 austenitic stainless steels. However, SUS316L and SUS405 showed little degradation due to hydrogen. A marked increase in the amount of martensitic transformation occurred in the hydrogen-charged SUS304 specimens compared to specimens without hydrogen charge. In case of SUS316L, little martensitic transformation occurred in either specimens with and without hydrogen charge. The results of S-N testing showed that in the case of the 0.7C–13Cr stainless steel and the Cr–Mo steel a marked decrease in fatigue resistance due to hydrogen occurred. In the case of the medium carbon steels hydrogen did not cause a reduction in fatigue behaviour. Examination of the slip band characteristics of a number of the alloys showed that slip was more localized in the case of hydrogen-charged specimens. Thus, it is presumed that a synergetic effect of hydrogen and martensitic structure enhances degradation of fatigue crack resistance.  相似文献   

10.
The objective of this research is to understand the effects of crack tip mechanics on environment-assisted cracking (EAC) of α-precipitation hardened β-Ti alloys. Precracked Ti–8V–6Cr–4Mo–4Zr–3Al and Ti–15Mo–3Nb–3Al are prone to severe EAC in aqueous NaCl when stressed under fixed or rising displacement. The latter is more damaging and establishes a lower bound threshold of the stress intensity ( K ) well below K IC . EAC is intergranular and occurs at fast growth rates (d a /d t , up to 150 μm/s) for five orders of magnitude of loading rate, d K /d t . Cracking, due to hydrogen-environment embrittlement, is rate limited by lattice diffusion of hydrogen. EAC at fast d a /d t or high d K /d t requires process zone embrittlement sites very near to the crack tip or enhanced H transport. Subcritical d a /d t versus K depends on loading format through crack tip strain rate (ε˙CT ) differences governed by d K /d t , d a /d t and creep. A continuum model approximates the contributions of d K /d t and d a /d t to ε˙CT and EAC, but it is inconsistent with in situ measurements of crack tip strain. Intergranular cracking is exacerbated by high ε˙CT that destabilizes the crack tip passive film and enables hydrogen uptake from an electrochemical reaction. EAC is mitigated when ε˙CT is insufficient in these regards.  相似文献   

11.
The effects of a post-weld heat treatment on the fracture toughness and fatigue crack growth behaviour of electron beam welds of an α + β titanium alloy, Ti–6.5Al–1.9Zr–0.25Si have been studied. Welds in the stress-relieved condition exhibited poor fracture toughness due to poor energy absorbing capacity of the thin α and α' phases. Post-weld heat treatment which resulted in the decomposition of α' to α + β and the coarsening of intragranular and intergranular α resulted in improved toughness. This improvement in the toughness is related to improved ductility leading to crack blunting, crack path deviation at the thick intragranular and intergranular α phase. Fatigue crack growth resistance of welds was superior to the base metal in the α + β heat-treated condition. The superior crack growth resistance of the welds is due to the acicular α microstructure which results in a tortuous crack path and possible crack closure arising from crack path tortuosity.  相似文献   

12.
Creep-fatigue crack growth behaviour of a Type 304 stainless steel, a quenched 21/4Cr-1Mo steel, Hastelloy X, a Ti-6242 alloy, and a low carbon steel under different reversed loading patterns (P-P, C-P and C-C) were investigated in air and a vacuum environment. The results are discussed in the light of fracture mechanics and fractography. Crack growth rates for all of the materials tested were successfully correlated in terms of the cyclic J integral range (Δ J ) irrespective of the loading patterns. In the low growth rate region, where fatigue fracture was predominant, crack growth rates of all the materials were about the same for the same value of Δ J. On the other hand, growth rates were somewhat different, depending on the creep ductility of the material in the region of high growth rate, where creep fracture was predominant. Materials with lower ductility exhibited higher growth rates for the same Δ J values. Differences were insignificant between the crack growth rates in air and vacuum and were consistent with the small differences observed in the fracture surface morphology in the two environments.  相似文献   

13.
A generalized model enhancement is proposed to link small- and large-crack growth laws. The enhancement is based on crack growth rate laws with crack tip plastic zone size formulations. Transition functions are used to transform small-crack plastic zone sizes and crack growth law exponents to those predicted by linear-elastic fracture mechanics. In doing so, influences on crack growth, e.g. constraint, crack aspect ratio and specimen geometry are accounted for. The applicability of the enhancement is directed toward instances where small cracks start from geometric features and grow through stress gradients to eventually become large cracks under nominal LEFM conditions. The enhancement is applied to the Wang model, and crack growth rate and fatigue lifetime predictions are made. The enhancement is shown to provide a good correlation to experimental results for Ti–6Al–4V under various maximum stresses at a stress ratio of R = 0.4.  相似文献   

14.
This paper deals with the fracture toughness and R-curve behavior of ceramic-metal functionally graded materials (FGMs). A possibility of stable crack growth in a three-point-bending specimen is examined based on the driving force and resistance for crack growth in FGMs, and the distribution of fracture toughness or R-curve behavior is evaluated on FGMs fabricated by powder metallurgy using partially stabilized zirconia (PSZ) and stainless steel (SUS 304). The materials have a functionally graded surface layer (FGM layer) with a thickness of 1 mm or 2 mm on a SUS 304 substrate. Three-point-bending tests are carried out on a rectangular specimen with a very short crack in the ceramics surface. On the three-point-bending test, a crack is initiated from a short pre-crack in unstable manner, and then it propagates in stable manner through the FGM layer with an increase in the applied load. From the relationship between applied load and crack length during the stable crack growth in the FGM layer, the fracture toughness is evaluated. The fracture toughness increases with an increase in a volume fraction of SUS 304 phase.  相似文献   

15.
Abstract— Imitating Garwood's 3-parameter technique, an experimental parameter J max was introduced to predict fatigue crack growth rate (d a /d N ) over a wide range including small scale yielding and large scale yielding. It was found that for a Δ K -increasing fatigue test condition, J max is a valid parameter. A significant crack growth acceleration, caused by a transition of fracture mechanism, occurs when J max= J IC The fracture mechanism involving striation formation when J max < J IC becomes ductile tearing when J max > J IC Equations to predict the effect of stress-ratio on J max as well as on d a /d N are given.  相似文献   

16.
.The fatigue crack growth (FCG) behaviour of the aluminium–lithium (Al–Li) alloy 2090-T84 has been investigated from a series of constant amplitude FCG tests. The influence of in-plane orientation (L–T, T–L, L–T + 45°) and sheet thickness (1.6 and 6  mm) on the FCG rates for the rolled product has been examined. In general, the T–L orientation possesses superior FCG resistance for both thicknesses and the 6  mm thick sheet material showed marginally improved FCG resistance when compared to the 1.6  mm thick material, for all orientations. Closure-corrected FCG data suggests that much of the difference between the L–T and T–L orientation for the 6  mm thick sheet arises from differences in crack closure levels. When comparing the crack closure levels for C(T) and M(T) specimens, a significant difference is shown as ΔK increases. Fatigue crack growth rates for ΔK less than 15  MPa m were significantly higher in the M(T) specimens compared to the C(T) specimens. Compared with other factors examined the influence of specimen geometry appears to be a dominant factor.  相似文献   

17.
Tensile and gigacyclic fatigue behaviour of Ti–6Al–2Sn–4Zr–6Mo alloy were investigated as a function of lamellar primary α- and β-transformed microstructures. Three thermomechanical processes (TP1, TP2, TP3) were selected to produce different combinations of microstructural features on two slightly different compositions of the alloy (A and B). Ultrasonic fatigue tests were performed in air and liquid nitrogen at a frequency of 20 kHz ( R = −1, T  = 300 and 77 K), giving fatigue tests up to 109 cycles. Microstructural features and the fracture initiation dependence on the primary α lamellar phase were observed by SEM and/or characterized by quantitative image analysis. It has been found that the microstructure of alloy B produced by TP1 represents a better compromise between resistance to initiation and resistance to microcrack growth. Quicker initiation occurs in coarser α-platelets (TP2, alloy B), and the continuous partially transformed β matrix appears to effectively decrease the tensile and HCF resistance. The bimodal structure (TP3, alloy B) has the best resistance at room temperature, but the presence of a coarse globular phase decreases this fatigue resistance at low temperature.  相似文献   

18.
Commercial austenitic stainless steel SUS304H with small amount of vanadium addition was used in this study. Small punch (SP) creep and uniaxial tensile creep tests were conducted at 650, 700, and 750 °C to measure creep lives and the minimum displacement rates or the minimum creep strain rates. The measured parameters were compared between the two test methods, seeking empirical relationships among the parameters using Larson-Miller Parameter and Monkman-Grant relation. Magnitude of the applied stress (MPa) in the uniaxial tensile creep test was approximately equal to the applied load value (N) in the SP creep test at all test temperatures. It was shown that during the creep deformation of the SP creep specimen, crack initiation and accompanying crack growth occur simultaneously. Competing failure mechanisms of creep deformation and crack growth may affect the SP creep life and consequently determine the proportionality function, α, in the relation between the SP load and the tensile creep rupture stress in creep tests.  相似文献   

19.
The appearance of the fatigue fracture surface and crack growth curve have been examined for a Ti–2.5Cu alloy with different microstructures (two equiaxed and two lamellar microstructures), and for TIMETAL 1100 with a lamellar microstructure. With increasing Δ K , a slope change in the crack growth curve correlates with a transition in the fracture surface appearance (induced by a fracture mode transition); this being found in each microstructure. The microstructure size that controls the fatigue fracture is found to be the grain size for equiaxed microstructures and the lamella width for lamellar microstructures. The transitional behaviour can be interpreted in terms of a monotonic plastic zone size model in microstructures having a coarse microstructure size and in terms of a cyclic plastic zone size model for microstructures having a fine microstructure size.  相似文献   

20.
This study reports an experimental investigation of fatigue crack propagation in AlMgSi1-T6 aluminium alloy using both constant and variable load amplitudes. Crack closure was monitored in all tests by the compliance technique using a pin microgauge. For the constant amplitude tests four different stress ratios were analysed. The crack closure parameter U was calculated and related with Δ K and the stress ratio, R . The threshold of the stress intensity factor range, Δ K th , was also obtained. Fatigue crack propagation tests with single tensile peak overloads have been performed at constant load amplitude conditions. The observed transient post overload behaviour is discussed in terms of the overload ratio, Δ K baseline level and R . The crack closure parameter U trends are compared with the crack growth transients. Experimental support is given for the hypothesis that crack closure is the main factor determining the transient crack growth behaviour following overloads on AlMgSi1-T6 alloy for plane stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号