首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Single and binary metal systems were employed to investigate the removal characteristics of Pb2+, Cu2+, Cd2+, and Zn2+ by Chlorella sp. HA-1 that were isolated from a CO2 fixation process. Adsorption test of single metal systems showed that the maximum metal uptakes were 0.767 mmol Pb2+, 0.450 mmol Cd2+, 0.334 mmol Cu2+ and 0.389 mmol Zn2+ per gram of dry cell. In the binary metal systems, the metal ions on Chlorella sp. HA-1 were adsorbed selectively according to their adsorption characteristics. Pb2+ ions significantly inhibited the adsorption of Cu2+, Zn2+, and Cd2+ ions, while Cu2+ ions decreased remarkably the metal uptake of Cd2+ and Zn2+ ions. The relative adsorption between Cd2+ and Zn2+ ions was reduced similarly by the presence of the other metal ions.  相似文献   

2.
Microalgae fix CO2 as energy source and afford biomass and high valued products such as carotenoids, pigments, proteins, and vitamins that can be used for the production of nutraceuticals, pharmaceuticals, animal feed additives, cosmetics, etc. Carbon dioxide is the sole source of carbon and it is supplied continuously for the microalgal cultivation. But undissolved CO2 is lost by outgassing and sufficient dissolved CO2 should be provided to avoid carbon limitation. The effect of CO2 mass transfer with different CO2 concentrations, aeration rate of gas, bubble size, baffle type and baffle number on the growth of Chlorella sp. AG10002 was investigated and the optimized conditions for the enhancement of biomass productivity were determined. We confirm that these results can be provided as basic data to improve the CO2 mass transfer ability for the high density culture of Chlorella sp. and some microalgae having commercial value.  相似文献   

3.
A recent study by Eggeman and Chaffin (2005 Eggeman , T. , and Chafin , S. ( 2005 ). Beware of pitfalls of CO2 freezing predictions , Chem. Eng. Prog. , 101 ( 3 ), 3944 . [Google Scholar]), which showed large discrepancies in CO2 freeze-out conditions as predicted by several commercial simulators, prompted a reexamination of using the TBS equation of state for phase equilibrium calculations involving solids. Salim and Trebble (1994 Salim , P. , and Trebble , M. A. ( 1994 ). Modelling of solid phases in thermodynamic calculations via translation of a cubic equation of state at the triple point , Fluid Phase Equilib. , 93 , 7599 .[Crossref] [Google Scholar]) had previously presented a methodology for extending the Trebble-Bishnoi-Salim (TBS) equation of state (Salim, 1990 Salim , P. ( 1990 ). A modified Trebble-Bishnoi equation of state, M.Sc. thesis , University of Calgary . [Google Scholar]) to calculations involving a solid phase. In this study, the CO2 freeze-out conditions in CO2/CH4 and CO2/C2H6 mixtures are calculated from the TBS equation of state, and it is shown that they provide a better data fit than the traditional Poynting correction method. Furthermore, since the use of an equation of state in SLE/SVE calculations does not require the explicit assumption of a pure solid phase, the model was assessed for its ability to correlate CO2 gas hydrate equilibrium conditions. Gas hydrates were simply treated as an impure solid phase, and it was seen that the predictions of gas hydrate equilibrium were in very good agreement with the experimental data. Computationally, the use of the TBS equation of state has the advantage, over the model of Yokozeki (2005 Yokozeki , A. ( 2005 ). Methane gas hydrates viewed through unified solid-liquid-vapour equation of state , Int. J. Thermophys. , 26 ( 3 ), 743765 . [Google Scholar]), that it does not require a modifying factor (cb) in the repulsive term to handle the presence of hydrates; they are instead handled using a unique binary interaction parameter for the hydrate phase.  相似文献   

4.
Abstract

In this work, a growth of Ag2CO3-TiO2 NPs over GO sheets and reduction of GO were simultaneously achieved by the hydrothermal process at 130 °C for 4?h. The photocatalytic activity of the as-prepared Ag2CO3-TiO2 NPs decorated reduced graphene oxide (Ag2CO3-TiO2/rGO) composite was studied by the degradation of methylene blue (MB) solution under visible light irradiation. A remarkable enhancement in the photocatalytic activity of the TiO2 was achieved after sensitizing with Ag2CO3 and loading in rGO sheets which is attributed to the reduced charge recombination, enhanced dye adsorption, and the improvement in the light harvesting capacity of the composite.  相似文献   

5.
Submonolayer deposits of titania on a Rh foil have been found to increase the rate of CO2 hydrogenation. The primary product, methane, exhibits a maximum rate at a TiO x coverage of 0.5 ML which is a factor of 15 higher than that over the clean Rh surface. The rate of ethane formation displays a maximum which is 70 times that over the unpromoted Rh foil; however, the selectivity for methane remains in excess of 99%. The apparent activation energy for methane formation and the dependence of the rate on H2 and CO2 partial pressure have been determined both for the bare Rh surface and the titania-promoted surface. These rate parameters show very small variations as titania is added to the Rh catalyst. The methanation of CO2 is proposed to start with the dissociation of CO2 into CO(a) and O(a), and then proceed through steps which are identical to those for the hydrogenation of CO. The increase in the rate of CO2 hydrogenation in the presence of titania is attributed to an interaction between the adsorbed CO, released by CO2 dissociation, and Ti3+ ions located at the edge of TiO x islands covering the surface. Differences in the effects of titania promotion on the methanation of CO2 and CO are discussed in terms of the mechanisms that have been proposed for these two reactions.  相似文献   

6.
《分离科学与技术》2012,47(11):1606-1616
This paper reports on the properties of an MFI-type zeolite (silicalite-1) membrane synthesized on a novel tubular support with a 0.45 µm-pore size active layer consisting of zirconium and titanium oxides. Even though the membrane was synthesized by a pore plugging method, apart from penetrating into the support, the silicalite-1 crystals formed a 1.5 µm layer on top of the support. After the zeolite synthesis, the Si constituted more than 35% of the active layer of the support, which implies small size and close packing of the silicalite-1 crystals in the pores of the active layer.

Single gas permeation tests with N2 and CO2 revealed comparable N2 and CO2 permeances. On the other hand, CO2/N2 gas separation tests performed at different total feed pressures and feed compositions lead to CO2/N2 permselectivities as high as 26.0, with the corresponding CO2 permeance of 6 × 10?8 mol/m2 Pa s. The effects of changing the partial pressure gradient of CO2 across the membrane by means of varying the total feed pressure and the feed composition on the CO2 permeance and CO2/N2 permselectivity are discussed.  相似文献   

7.
《分离科学与技术》2012,47(2):283-296
Abstract

In this study, a new preparation method providing greatly improved CO2 sorption is introduced. Li2ZrO3 sorbent was prepared by low temperature co‐precipitation and compared in CO2 sorption performance with a sorbent prepared by the conventional high temperature solid‐state reaction method. The two sorbents were characterized using scanning electron microscopy, X‐ray diffraction and thermo‐gravimetric analysis. The Li2ZrO3 powder prepared by the relatively simple co‐precipitation method showed significantly better performance than the one prepared by solid‐state reaction with respect to both kinetics and CO2 sorption capacity. Extensive study of the powder prepared by co‐precipitation has been performed at various conditions.  相似文献   

8.
Mixed solvents are a combination of chemical and physical solvents and have some advantages over traditional treating solvents for the removal of acid gases from gas streams. The solubility of H2S and CO2in a mixed solvent consisting of AMP (2-amino-2-methyl-l-propanol), sulfolane, and water has been measured at 40 and 100°C at partial pressures of the acid gas to 6000 kPa. The solubility in the mixed solvent was compared with the solubility in an aqueous solution of equivalent amine concentration. At solution loadings less than 1 mol acid gas/mol amine, the solubility of the acid gas is lower in the mixed solvent than in the corresponding amine solvent. At higher loadings, the trend is reversed and the solubility is greater in the mixed solvent. The results are rationalized in terms of the effect of the physical solvent component on the chemical reaction and physical vapor-liquid equilibria. The solubility model of Deshmukh and Mather was used to correlate the data.  相似文献   

9.
Based on experiments on desulfurization, CaSO4 decomposition, and a system approach using theoretical analysis, efficient in-furnace desulfurization in O2/CO2 combustion was investigated. The influence of combustion conditions and sorbent properties on system desulfurization efficiency was clarified. The global desulfurization efficiency was found to increase with O2 purity. The global desulfurization efficiency in a dry recycle was higher than that in a wet recycle. The global efficiency of in-furnace desulfurization decreased with initial O2 concentration. As the temperature increased, the global desulfurization efficiency increased first and then decreased due to the decomposition of CaSO4. In the temperature range investigated, the global desulfurization efficiency in O2/CO2 coal combustion was much higher than that of conventional coal combustion in air. The global desulfurization efficiency decreased with sorbent size. When the particle radius decreased to one quarter, the global desulfurization efficiency doubled, becoming as high as 80%. The global desulfurization efficiency was very different among the three sorbents investigated, whether in O2/CO2 combustion or in conventional air combustion. The global desulfurization efficiency increased in the order of Ca(OH)2, scallop, and limestone in O2/CO2 combustion, but in the order of scallop, Ca(OH)2, and limestone in conventional air combustion. Nevertheless, all three sorbents demonstrated much higher desulfurization efficiency in O2/CO2 combustion than in conventional air combustion.  相似文献   

10.
FTIR spectra are reported of CO2 and CO2/H2 on a silica-supported caesium-doped copper catalyst. Adsorption of CO2 on a “caesium”/silica surface resulted in the formation of CO2 and complexed CO species. Exposure of CO2 to a caesium-doped reduced copper catalyst produced not only these species but also two forms of adsorbed carboxylate giving bands at 1550, 1510, 1365 and 1345 cm−1. Reaction of carboxylate species with hydrogen at 388 K gave formate species on copper and caesium oxide in addition to methoxy groups associated with caesium oxide. Methoxy species were not detected on undoped copper catalyst suggesting that caesium may be a promoter for the methanol synthesis reaction. Methanol decomposition on a caesium-doped copper catalyst produced a small number of formate species on copper and caesium oxide. Methoxy groups on caesium oxide decomposed to CO and H2, and subsequent reaction between CO and adsorbed oxygen resulted in carboxylate formation. Methoxy species located at interfacial sites appeared to exhibit unusual adsorption properties.  相似文献   

11.
A Middle East-based amine sweetening unit, with an overall capacity of about 2.2 BSCFD of gas, is among the world’s largest process plants and currently processes sour gas with 10 mol% of hydrogen sulfide (H2S) and carbon dioxide (CO2) put together. Current expectation is that acid gas contents in the feed may increase beyond the design limit of the plant. The present work is an effort to quantify the effects of the feed gas CO2 increase on the plant and to proffer solutions to handle these effects efficiently. We revised the kinetics of amine-based CO2 absorption correlation of an existing model using real-data-driven parameters re-estimation. Evolutionary technique that employs particle swarm optimization algorithm is used for this purpose. The new CO2 kinetic model is inserted in a first-principle process simulator, ProMax® V4.0, in order to analyze various solutions necessary to mitigate the operational challenges due to increased feed CO2. The process plant with present design and operating conditions is determined to handle up to 8.45 mol% CO2 contents in the sour gas feed. Further results revealed that methyldiethanolamine, diethanolamine, and dimethyl ether propylene glycol (DEPG) could not handle this high feed CO2 challenge, even at maximum (design) steam and solvent usage. However, diglycolamine exclusively renders the solution as it treats high CO2 feed gas efficiently with allowable utility consumption, while satisfying the constraints imposed by product gas specifications.  相似文献   

12.
The biodegradability ofVernonia galamensis seed oil (VO) has been demonstrated with two environmental bacterial strains,Acinetobacter Iwoffi (HU 3955), andPseudomonas sp. (HU 4020). A time-dependent increase in the degradative activities of both bacteria species was apparent. There wasca. 60% decrease in the amount of VO over an eightday incubation period. Additionally, lipolytic activity was evident from the amount of free fatty acid (FFA) that was generated. The percent FFA of the residual oil were 82% for thePseudomonas strain, and 62% for theAcinetobacter strain. The weight per epoxy value of the VO in the fermentation medium remained relatively constant over the incubation period, suggesting the lack of preference for either the epoxidized or nonepoxidized acids present in VO.  相似文献   

13.
In this study, a mathematical model and simulation code has been developed to investigate the performance of a transcritical CO2 heat pump dryer. The model takes into account detailed heat and mass transfer and pressure drop phenomena occurring in each component of the system. To take care of the variable heat transfer properties, the heat exchanger components were divided into several infinitesimal segments to examine the state, heat and mass balance and pressure drop for both refrigerant and air, and hence accurate results are expected. In Part 2 of the article, the model developed has been validated with experimental data and then the model was used to investigate effects of important operating parameters on the performance.  相似文献   

14.
The hawkmoth Manduca sexta (Lepidoptera: Sphingidae), an experimentally favorable Lepidopteran that is highly sensitive to carbon dioxide (CO2), feeds on the nectar of a range of flowering plants, such as Datura wrightii (Solanaceae). Newly opened Datura flowers give off dramatically elevated levels of CO2 and offer ample nectar. Thus, floral CO2 emission could indicate food-source profitability. This study documents that foraging Manduca moths prefer surrogate flowers that emit high levels of CO2, characteristic of newly opened Datura flowers. We show for the first time that CO2 may play an important role in the foraging behavior of nectar-feeding insects.  相似文献   

15.
Adsorption of carbon dioxide by hydrotalcites was investigated by using a gravimetric method at 450 ‡C. Hydrotalcites possessed higher adsorption capacity of CO2 than other basic materials such as MgO and Al2O3. Two different preparation methods of hydrotalcite with varying Mg/Al ratio were employed to determine their effects on the adsorption capacity of CO2. In addition, varying amounts of K2CO3 were impregnated on the hydrotalcite to further increase its adsorption capacity of CO2. The hydrotalcite prepared by the high supersaturation method with Mg/Al=2 showed the most favorable adsorption-desorption pattern with high adsorption capacity of CO2. K2CO3 impregnation on the hydrotalcite increased the adsorption capacity of CO2 because it changed both the chemical and the physical properties of the hydrotalcite. The optimum amount of K2CO3 impregnation was 20 wt%. The hydrotalcite prepared by the high supersaturation method with Mg/Al=2 and 20 wt% K2CO3 impregnation has the highest adsorption capacity of CO2 with 0.77 mmol CO2/g at 450 ‡C and 800 mmHg.  相似文献   

16.
The decomposition behavior and mechanism of calcium sulfate in O2/CO2 pulverized coal combustion were studied in an entrained flow reactor. A reaction rate expression correlating the influence of various factors was proposed for CaS04 decomposition and it is able to predict CaS04 decomposition satisfactorily. Under the conditions investigated, the decomposition of CaS04 was found to be a regime of chemically controlled shrinking core reaction. A CO2-rich atmosphere enhances CaSO4 decomposition in absence of oxygen. CaSO4 particles have catalytic effect on formation of CO from CO2. A high SO2 concentration inhibits CaSO4 decomposition. The kinetics of CaSO4decomposition has obvious dependence on experimental facilities and conditions, whereas the activation energy has much lower dependence. The kinetics derived in this work is more appropriate for investigating desulfurization in O2/CO2 pulverized coal combustion because an entrained flow reactor has a much closer condition to that in O2/CO2 pulverized coal combustion than a TGA.  相似文献   

17.
The interaction of CO2 with K-promoted Mo2C/Mo(100) has been studied with high-resolution electron energy loss spectroscopy, work function measurements and temperature-programmed desorption. Pre-adsorbed potassium dramatically affects the adsorption behavior of CO2 on the Mo2C/Mo(100) surface. It increases the rate of adsorption, the binding energy of CO2 and it induces the dissociation of CO2 through the formation of negatively charged CO2. Potassium adatoms also promote the dissociation of adsorbed CO over Mo2C. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
In this work, a mathematical model was developed for the prediction of packed-bed reactor behavior for CaO+CO2 reaction based on the random pore model. A natural limestone and a modified sorbent using acetic acid washing were used for the experiments. The performances of these sorbents were initially determined using a thermogravimeter analyzer. Then, the reaction was accomplished in a packed-bed reactor for obtaining CO2 breakthrough curves and investigation of model predictions. This model was able to successfully predict the effect of process conditions and solid texture on the breakthrough curves of the packed-bed reactor.  相似文献   

19.
The reforming of CH4 with CO2 over supported Rh catalysts has been studied over a range of temperatures (550–1000 K). A significant effect of the support on the catalytic activity was observed, where the order was Rh/Al2O3>Rh/TiO2>Rh/SiO2. The catalytic activity of Rh/SiO2 was promoted markedly by physical mixing of Rh/SiO2 with metal oxides such as Al2O3, TiO2, and MgO, indicating a synergetic effect. The role of the metal oxides used as the support and the physical mixture may be ascribed to the promotion in dissociation of CO2 on the surface of Rh, since the CH4 + CO2 reaction is first order in the pressure of CO2, suggesting that CO2 dissociation is the rate-determining step. The possible model of the synergetic effect was proposed.  相似文献   

20.
PdCl2-CuCl2 catalyst supported on activated carbon was examined for the low temperature oxidation of CO. The catalyst developed in the present study was active and stable at ambient conditions if water were existing in the feed gas stream. The addition of Cu(NO3)2 into the PdCl2-CuCl2 catalyst significantly enhanced the CO oxidation activity. X-ray diffraction study revealed that the role of Cu(NO3)2 was to stabilize active Cu(II) species, Cu2Cl(OH)3, on the catalyst surface which maintains the redox property of palladium. When HC1 and SO2 were also existing in the feed, they easily inactivated the catalyst. It was found that HC1 and SO2 inhibited the formation of active Cu(II) species on the catalyst surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号