首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 196 毫秒
1.
宽筛分流化床气—固两相流动结构离散颗粒模型   总被引:5,自引:0,他引:5  
建立了适合描述宽筛分流化床气 固两相流动结构的离散颗粒模型。颗粒的运动满足牛顿第二定律 ,流体相的运动规律由局部平均的纳维 斯托克斯方程求解 ,两相间的耦合由牛顿第三定律决定。对宽筛分流化床中气泡的形成、颗粒的流化过程进行了数值模拟 ,结果与实验现象相符合 ;模拟结果还发现单颗粒的运动速度表现出不可预测特性 ,颗粒的总体速度不完全满足正态分布。  相似文献   

2.
《动力工程学报》2017,(11):903-911
基于颗粒-颗粒、颗粒-流体间的传热机制建立了颗粒尺度下的传热模型,并将其与计算流体力学-离散颗粒模型(CFD-DEM)耦合,建立了CFD-DEM传热模型,在传热计算中采用真实的颗粒接触刚度修正了颗粒-颗粒间的传热。采用典型喷动流化床内的颗粒传热实验数据验证了CFDDEM传热模型的准确性,并利用该模型分析了喷动流化床内的传热特性。结果表明:喷动流化床内颗粒的传热系数受其运动状态的影响,颗粒在环隙区域外循环的传热系数比内循环传热系数大;喷动流化床内平均传热系数呈对称分布,流化区域内的平均传热系数大于非流化区域,床体底部两侧及气体入口处的平均传热系数最大,床层中央区域的平均传热系数较小.  相似文献   

3.
在国内外研究的基础上,结合环-核结构的流动模型建立了循环流化床锅炉的传热数学模型。利用该模型对循环流化床锅炉的对流、辐射传热特性进行了仿真研究,并对结果进行分析。仿真结果表明,循环流化床锅炉的对流传热系数与截面平均颗粒体积份额有密切关系,而辐射传热系数与环形区内温度密切相关;循环流化床锅炉辐射传热占总传热的份额随炉膛高度的增加而增大.  相似文献   

4.
以循环流化床传热的颗粒絮团更新理论为基础,建立了一个计算床层与壁面同时均局部传热系数的通过将循环流化床床层沿高度分段的方法,构想了颗粒絮团在壁面的形成与运动过程,考虑了床层的轴向分布对时均局部传热系数的影响。模型计算结果与有关试验数据的对比表明该模型基本有效。  相似文献   

5.
流化床密相区流动特性的数值模拟   总被引:9,自引:0,他引:9       下载免费PDF全文
流化床内气固两相流动一直是实验研究和数值模拟的热点。基于Eulerian双流体模型,本文建立了流化床内的气固两相流动模型,采用FLUENT软件对流化床密相区两相流动特性、床内气泡的产生运动和爆裂等特性进行了数值模拟。模型中,将颗粒相看作是连续介质,建立与气相相同形式的数学模型;采用了离散介质动力理论,引入颗粒温度来描述固相粘性应力,并用气固曳力进行气固两相耦合。模拟得到了气泡产生、运动和爆裂的变化过程,与实验结果相一致。采用不同的曳力模型对流化床稠密两相流动进行了模拟,与Kuipers实验对比,结果表明采用Gidaspow曳力模型描述流化床稠密两相流动特性更准确。  相似文献   

6.
胡国新  李艳红  程惠尔 《动力工程》2001,21(3):1219-1223,1262
循环流化床中存在着分散固体颗粒的连续上升气相和相对紧密的颗粒团两部分,颗粒团聚物对气固两相传热有着重要的影响。采用拟Boltzmann动力学方法描述循环流化床中颗粒团的动力学行为,建立了循环流化床中气固两相间传热过程的理论模型,对气体表观流速、固体颗粒循环率等对气固传热系数沿床高分布规律的影响进行了分析和讨论。模型计算结果与参考文献中的实验数据进行了比较,两者符合较好。  相似文献   

7.
为对恒压及恒定进口流速条件下鼓泡流化床流场的分布特性及颗粒的运动情况进行研究,采用了密集离散相模型(DDPM)和离散相欧拉碰撞模型(DEM)分析了鼓泡流化床中流体扩散及颗粒的碰撞情况。同时采用实验测试手段对表面颗粒的速度进行检测,实验测试数据与模拟结果进行对比验证。从而对于理解流化床工作机理优化各项参数提供理论依据。  相似文献   

8.
《节能》2017,(6):19-24
为了深入探究水平管降膜蒸发的微观传热特性,采用基于VOF法的计算流体模型对水平管外降膜蒸发进行数值模拟,通过求解控制方程得到液膜内的温度场和速度场。分析了不同入口边界温度和Re数下管外薄液膜内热边界层、无量纲温度和局部传热系数的微观传热特性变化规律,定量给出了热发展区与充分热发展区的边界位置。模拟结果表明:液膜入口温度越高,液膜热发展区覆盖的圆周角度越小;液膜内的热发展区覆盖的角度随Re数的增大而增加是平均传热系数随Re数增大的原因;管外圆周方向无量纲温度分布证明了液膜中的传热包含导热和对流传热;管外液膜内纯导热系数与局部传热系数的差值随倾斜角的增加而减少是由于对流效应沿管圆周方向减弱引起的。  相似文献   

9.
《节能》2021,(1)
模拟纳米流体在三维管道中的流动和强化传热过程,运用数值计算方法研究纳米流体的流动特性和传热机理,探究不同纳米颗粒体积分数和不同纳米颗粒大小在不同雷诺数(Re)下对纳米流体的流动和传热特性的影响。基于DPM模型对纳米流体在圆管中的对流换热进行了数值模拟研究,研究结果表明,在一定范围内,每增加0.5%的体积分数,纳米流体的传热性能平均增强7.82%。随着纳米颗粒的减小,纳米流体的传热系数不断增加。  相似文献   

10.
针对目前密相气力输送数值模拟过程中所存在的关键问题,提出了一种描述固相内部相互作用对颗粒运动影响的数学模型。该模型建立在离散颗粒模型的基础上,使其既能够模拟悬浮流动的稀相颗粒运动,又能模拟管内出现堆积情况的超浓相气固两相流。利用所建立的数学模型对高压超浓相煤粉气力输送的颗粒流动过程进行了数值模拟,模拟结果揭示了典型的栓塞流、沙丘流等流型特征及其流型随固气比的演变规律,并结合实验进行了验证。管道输送栓塞流波动性较为明显,波动频率向高频转化;平均栓塞长度随着进料固气比增大而增大。  相似文献   

11.
循环流化床传热系数的计算模型   总被引:1,自引:0,他引:1  
本文在循环流化床流动模型的基础上建立了传热模型,流动模型根据实际运行情况考虑了颗粒的宽筛分,并把床层在轴向上分为密相床和稀相床两部分。在密相床内,传热按照鼓泡床传热微型进行计算;在稀相床内,传热模型建立在颗粒团更新的假设基础上,根据假设,床层由颗粒浓度很低的上升稀相和相对颗粒浓度较大的颗粒团两部分组成,两部分交替地与床壁面接触,床层和受热面间局部换热系数和颗粒浓度及两部分接触壁面的份额有关。模化结  相似文献   

12.
In this work, the two-fluid granular temperature model is used to investigate the heat exchanged between a heated wall and a gas-solid fluidized bed. Numerical simulations were performed in 2-D and 3-D fluidized beds using a solid phase effective thermal conductivity correlation based on the granular temperature. The heat exchange in the bubbles' wake is investigated by tracking the train of bubbles that rises along the heated wall. Large heat transfer coefficients were obtained in the rear wake region of bubbles due to relatively larger granular temperature there and intense particle circulation.  相似文献   

13.
In the present paper the effect of pressure on bed‐to‐wall heat transfer in the riser column of a pressurized circulating fluidized bed (PCFB) unit is estimated through a modified mechanistic model. Gas–solid flow structure and average cross‐sectional solids concentration play a dominant role in better understanding of bed‐to‐wall heat transfer mechanism in the riser column of a PCFB. The effect of pressure on average solids concentration fraction ‘c’ in the riser column is analysed from the experimental investigations. The basic cluster renewal model of an atmospheric circulating fluidized bed has been modified to consider the effect of pressure on different model parameters such as cluster properties, gas layer thickness, cluster, particle, gas phase, radiation and bed‐to‐wall heat transfer coefficients, respectively. The cluster thermal conductivity increases with system pressure as well as with bed temperature due to higher cluster thermal properties. The increased operating pressure enhances the particle and dispersed phase heat transfer components. The bed‐to‐wall heat transfer coefficient increases with operating pressure, because of increased particle concentration. The predicted results from the model are compared with the experimentally measured values as well as with the published literature, and a good agreement has been observed. The bed‐to‐wall heat transfer coefficient variation along the riser height is also reported for different operating pressures. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
周明哲 《节能技术》2012,30(4):327-329,334
本文基于气固两相欧拉-欧拉双流体模型,对多孔布风鼓泡流化床内气固两相流流动特性进行了数值模拟,研究了床内压力分布,气泡的运动行为,以及气相和颗粒相速度的分布情况,并将模拟结果与相应实验数据进行比较。结果表明所用模型能较好的预测流化床内气固两相流的流动特性,模拟结果与实验结果吻合较好。  相似文献   

15.
非均匀布风流化床的DEM模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
对二维非均匀布风流化床内的颗粒运动进行了数值模拟,用欧拉方法处理气相场的同时用拉格朗日方法处理离散颗粒场,直接跟踪颗粒场中的每个颗粒。模拟结果表明,非均匀布风流化床内存在颗粒的内循环运动,因此颗粒的混合特性优于均匀布风流化床。  相似文献   

16.
流化床反应器中颗粒与颗粒之间的传热在一定程度上决定了化学反应的速率及反应的中间历程。本文通过对气固流化床乳化相中颗粒群结构的进一步认识,建立了颗粒间的辐射换热模型,比较了不同颗粒直径、不同床层温度水平及不同流化工况下颗粒间辐射换热与通过气膜导热份额的大小,并预测了流化床反应器中反应颗粒与惰性床料之间的温差,对于流化床反应器选择合理的运行工况和进行操作参数优化具有参考价值  相似文献   

17.
In the present work, the fundamental mechanism between bed‐to‐membrane water‐walls in the riser column of a circulating fluidized bed (CFB) combustor is presented. The bed‐to‐membrane water‐wall heat transfer depends on the contributions of particle heat transfer, dispersed phase heat transfer and radiation heat transfer. The fundamental mechanism of particle heat transfer and the effect of fraction of wall exposed to clusters and gas gap thickness between cluster and wall on particle heat transfer coefficient and bed‐to‐wall heat transfer coefficient are investigated. The influence of operating parameters like cross‐sectional average volumetric solids concentration and bed temperature on particle and bed‐to‐wall heat transfer are also reported. The present work contributes some fundamental information on particle heat transfer mechanism, which is responsible for increasing the bed‐to‐wall heat transfer coefficient (apart from dispersed phase convection and radiation heat transfer). The details on particle heat transfer mechanism will enable to understand the basic heat transfer phenomena between bed‐to‐membrane water‐walls in circulating fluidized bed combustors in a detailed way, which in turn will aid for better design of CFB combustor units. The particle heat transfer mechanism is significantly influenced by the fraction of wall exposed to clusters and gas gap thickness between clusters and wall. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
A detailed sensitivity analysis is performed on a one-dimensional fixed bed downdraft biomass gasification model. The aim of this work is to analyze how the heat transfer mechanisms and rates are affected as reaction front progresses along the bed with its main reactive stages (drying, pyrolysis, combustion and reduction) under auto-thermal conditions. To this end, a batch type fixed-bed gasifier was simulated and used to study process propagation velocity of biomass gasification. The previously proposed model was validated with experimental data as a function of particle size. The model was capable of predicting coherently the physicochemical processes of gasification allowing an agreement between experimental and calculated data with an average error of 8%. Model sensitivity to parametric changes in several model and process parameters was evaluated by analyzing their effect on heat transfer mechanisms of reaction front (solid–gas, bed–wall and radiative in the solid phase) and key response variables (temperature field, maximum solid and gas temperatures inside the bed, flame front velocity, biomass consumption and fuel/air ratio). The model coefficients analyzed were the solid–gas heat transfer, radiation absorption, bed–wall heat transfer, pyrolysis kinetic rates and reactor-environment heat transfer. On the other hand, particle size, bed void fraction, air intake temperature, gasifying agent composition and gasifier wall material were analyzed as process parameters. The solid–gas heat transfer coefficient (0.02 < correction factor < 1.0) and particle size (4 < diameter < 30 mm) were the most significant parameters affecting process behavior. They led to variations of 88% and 68% in process velocity, respectively.  相似文献   

19.
A three-dimensional model is developed to predict the bed-to-wall radiative heat transfer coefficient in the upper dilute zone of circulating fluidized bed (CFB) combustors. The radiative transfer equation is solved by the discrete ordinates method and Mie scattering theory is applied to calculate the absorption and scattering efficiency factors of particles existing in CFB combustors. Empirical correlations calculate both spacial variation of solid volume fraction and temperature distribution at the wall. The model considers the influences of the particle properties (including particle size distribution, particle optical constants and solid composition) on the radiative heat transfer coefficient. Simulation results show that the particle properties have significant influences on the bed-to-wall radiative heat transfer coefficient in CFB combustors. A very good agreement of predicted results is shown with experimental data.  相似文献   

20.
The present work reports the influence of pressure and bed temperature on particle‐to‐wall heat transfer in a pressurized circulating fluidized bed (PCFB). The particle convection heat transfer plays a dominant role in determining the bed‐to‐wall heat transfer coefficient. So far, no information is reported on the effect of pressure and bed temperature on particle‐to‐wall heat transfer in a PCFB in the published literature. The present investigation reports some information in this direction. The effect of system pressure and bed temperature are investigated to study their influence on cluster and particle heat transfer. The particle convection heat transfer coefficient increases with system pressure and bed temperature due to higher cluster thermal conductivity. The increase in particle concentration (suspension density) results in greater cluster solid fraction and also the particle concentration near the wall is enhanced. This results in higher cluster and particle convection heat transfer between the bed and the wall. Higher particle convection heat transfer coefficient results in enhanced heat transfer between the bed and the wall. The results will also help to understand the bed‐to‐wall heat transfer mechanism in a better way in a PCFB. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号