首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Zirconia doped with 3.2–4.2 mol% (6–8 wt%) yttria (3–4YSZ) is currently the material of choice for thermal barrier coating topcoats. The present study examines the ZrO2-Y2O3-Ta2O5/Nb2O5 systems for potential alternative chemistries that would overcome the limitations of the 3–4YSZ. A rationale for choosing specific compositions based on the effect of defect chemistry on the thermal conductivity and phase stability in zirconia-based systems is presented. The results show that it is possible to produce stable (for up to 200 h at 1000°–1500°C), single (tetragonal) or dual (tetragonal + cubic) phase chemistries that have thermal conductivity that is as low (1.8–2.8W/m K) as the 3–4YSZ, a wide range of elastic moduli (150–232 GPa), and a similar mean coefficient of thermal expansion at 1000°C. The chemistries can be plasma sprayed without change in composition or deleterious effects to phase stability. Preliminary burner rig testing results on one of the compositions are also presented.  相似文献   

2.
Lithium borate (Li2B4O7) and sodium borate (Na2B4O7) mineralize spinel formation from stoichiometric MgO and Al2O3 between 1000° and 1100°C. Mineralization with both compounds is shown to be mediated by B-containing liquids which form glass on cooling. However, the liquid compositions depend on the type of mineralizer and temperature, suggesting that templated grain growth or dissolution–precipitation mechanisms are operating, one dominating over the other under certain conditions. Na2B4O7-mineralized compositions show predominantly templated grain growth at 1000°C, which changes to dissolution–precipitation at 1100°C, whereas Li2B4O7-mineralized compositions show dissolution–precipitation from 1000°C. Li2B4O7 is a stronger mineralizer as spinel formation is complete with 3 wt% Li2B4O7 at 1000°C and with ≥1.5 wt% addition at 1100°C, whereas Na2B4O7-mineralized compositions are found to retain some unreacted corundum even at 1100°C.  相似文献   

3.
In order to improve the hot corrosion resistance of yttria-stabilized zirconia (YSZ), an Al2O3 overlay has been deposited on the surface of YSZ by electron-beam physical vapor deposition. Hot corrosion tests have been performed on the YSZ coatings with and without an Al2O3 overlay in the molten salt mixture (Na2SO4+0–15 wt% V2O5) at 950°C. The presence of V2O5 in the molten salt exacerbates degradation of both the monolithic YSZ coating and the composite YSZ/Al2O3 system. The formation of a low-melting Na2O–V2O5–Al2O3 liquid phase is responsible for degradation of the Al2O3 overlay. The Al2O3 overlay acts as a barrier against the infiltration of the molten salt into the YSZ coating during exposure to the molten salt mixture with <5 wt% vanadate.  相似文献   

4.
This paper reports ionic conductivity of yttria-stabilized zirconia (YSZ)–Al2O3 composite membranes. The tape cast specimens were subjected to binder burnout (500°C) and sintering (1550°C) processes to obtain 200–300 μm thick membranes. The ionic conductivity and microstructure of the membranes were characterized and are discussed in this paper. The ionic conductivity of the composite specimens was enhanced and was correlated with the number of charge carrier and their mobility. The solubility of Al2O3 in YSZ was minimal and nanosize Al2O3 of the batch sintered into microsize and existed as a distinct phase. The scanning electron microscopy micrographs revealed that YSZ and Al2O3 grains were strained.  相似文献   

5.
Reactions and Microstructure Development in Mullite Fibers   总被引:3,自引:0,他引:3  
Microstructural and compositional changes during heat treatment of sol–gel-derived mullite fibers with additions of 2 wt% B2O3, 2 wt% P2O5, 2 wt% Cr2O3, and (1 wt% P2O5+ 1 wt% Cr2O3) were compared with those of undoped mullite fibers. For all compositions the sequence of phase development was the crystallization of a spinel phase (†-Al2O3 or Al–Si spinel) from amorphous material, followed by the formation of mullite at higher temperatures. Differential thermal analysis showed that additions of B2O3 and P2O5 increased the temperature of spinel formation and that B2O3 significantly decreased the temperature of mullite formation. After 1 h at 1200°C, the size of mullite grains in fibers that contained B2O3 was less than 1000 Å the grains in fibers of other compositions were 6000 to 12000 Å. After 60 h at 1400°C, fibers modified with B2O3 had a grain size less than 2000 to 3000 Å the grains in fibers of other compositions were 6000 to 12000 Å. B2O3 was the most volatile additive.  相似文献   

6.
Orthoferrite-based perovskites are of interest as materials for the cathode in solid oxide fuel cells (SOFCs). Therefore, the chemical compatibility between perovskites of the composition (La1−xSrx)zFe1−yMnyO3−δ (0 # x # 0.3; 0.2 # y # 1; z = 0.90, 0.95, 1.00) and the solid electrolyte zirconia (ZrO2) doped with 8 mol% yttria (Y2O3) (8YSZ) has been investigated. Powder mixtures of the two materials have been annealed at different temperatures. The formation of monoclinic ZrO2 at 1000°C, as well as of La2Zr2O7 and SrZrO3 at 1400°C, has been determined in some samples. The reactions that are observed are discussed, with respect to the thermodynamic activities, tolerance factor, and oxygen-ion migration energies. Some perovskite compositions seem to be compatible with Y2O3-stabilized ZrO2 (YSZ), thereby offering the possibility to use orthoferrite-based perovskites in SOFCs with a solid electrolyte made of YSZ.  相似文献   

7.
The grain-boundary conductivity (ςgb) of 8-mol%-ytterbia-stabilized zirconia increased markedly with heat treatment between 1000° and 1300°C with a slow heating rate (0.1°C/min) before sintering. The extent of the ςgb improvement was the same or larger than that via Al2O3 addition. The heat treatment did not affect the grain-interior conduction when sintered at 1600°C, while Al2O3-derived scavenging significantly did, given the larger increment of total conductivity in the heat-treated sample. The formation of a silicon-containing phase in a discrete form was suggested as a possible route of scavenging the resistive phase from the correlation between average grain size and ςgb.  相似文献   

8.
Amorphous AI2O3, fabricated by reactive rf magnetron sputtering, has been evaluated as a planar waveguide material. The microstructure and optical properties of planar waveguides were examined as a function of deposition (substrate temperature, O2 flow rate) and annealing conditions. X-ray and electron diffraction verified that as-deposited films were amorphous for substrate temperatures up to 500°C and for a wide range of O2 flow rates. This amorphous phase was stable through anneals up to 800°C, but crystallized to " y -Al2O3 at 1000°C and to α-Al2O3 at 1200°C. The amorphous films had transmission windows that extended from 200 nm to 7 (Am with an average refractive index of 1.65 and reproducible losses as low as ∼1 dB/cm at 632.8 nm. The refractive index increased with substrate temperature, but was independent of O2 flow rate. The losses decreased with substrate temperature and increased as a function of O2 flow rate. As a final check on the amorphous structure, Cr-doped films were prepared by codeposition. Fluoresence was detected only in annealed crystalline films.  相似文献   

9.
The scavenging of a resistive siliceous phase via the addition of Al2O3 was studied, using imaging secondary-ion mass spectroscopy (SIMS), given the improved grain-boundary conductivity in 8-mol%-yttria-stabilized zirconia (8YSZ). The grain-boundary resistivity in 8YSZ decreased noticeably with the addition of 1 mol% of Al2O3. Strong SiO2 segregation at the grain boundaries was observed in a SIMS map of pure 8YSZ that contained 120 ppm of SiO2 (by weight). The addition of 1 mol% of Al2O3 caused the SiO2 to gather around the Al2O3 particles. The present observations provided direct and visual evidence of SiO2 segregation at the grain boundaries (which had a deleterious effect on grain-boundary conductivity) and the scavenging of SiO2 via Al2O3 addition.  相似文献   

10.
The electrical conductivity and ion/electron transference numbers in Al3O3 were determined in a sample configuration designed to eliminate influences of surface and gas-phase conduction on the bulk behavior. With decreasing O2 partial pressure over single-crystal Al2O3 at 1000° to 1650°C, the conductivity decreased, then remained constant, and finally increased when strongly reducing atmospheres were attained. The intermediate flat region became dominant at the lower temperatures. The emf measurements showed predominantly ionic conduction in the flat region; the electronic conduction state is exhibited in the branches of both ends. In pure O2 (1 atm) the conductivity above 1400°C was σ≃3×103 exp (–80 kcal/ RT ) Ω−1 cm−1, which corresponds to electronic conductivity. Below 1400°C, the activation energy was <57 kcal, corresponding to an extrinsic ionic condition. Polycrystalline samples of both undoped hot-pressed Al2O3 and MgO-doped Al2O3 showed significantly higher conductivity because of additional electronic conduction in the grain boundaries. The gas-phase conduction above 1200°C increased drastically with decreasing O2 partial pressure (below 10−10 atm).  相似文献   

11.
Tentative phase relations in the binary system BnOa-A12O3 are presented as a prerequisite to the understanding of the system Li2O-B2O3-Al2O3. Two binary compounds, 2A12O3.B2O3 and 9A12O3.-2B2O3, melted incongruently at 1030° f 7°C and about 144°C, respectively. Two ternary compounds were isolated, 2Li2O.A12O3.B2O3 and 2Li2O. 2AI2O3. 3B203. The 2:1:1 compound gave a melting reaction by differential thermal analysis at 870°± 20° C, but the exact nature of the melting behavior was not determined. The 2:2:-3 compound melted at 790°± 20° C to LizO.-5Al2O3 and liquid. X-ray diffraction data for the compounds are presented and compatibility triangles are shown.  相似文献   

12.
The preparation of near stoichiometric spinel and alumina-rich spinel composites from Al2O3and MgO powders with the addition of Na3AlF6up to 4 wt% in the temperature range 700°–1600°C was studied; 98 wt% spinel containing 72 wt% Al2O3can be produced from the mixture of 72 wt% (50 at.%) Al2O3+ 28 wt% (50 at.%) MgO powders with the addition of 1 wt% Na3AlF6fired at 1300°C for 1 h. Spinels containing 81–85 wt% Al2O3can be produced from either the mixture of 90 wt% (78 at.%) Al2O3+ 10 wt% (22 at.%) MgO or the mixture of 95 wt% (88 at.%) Al2O3+ 5 wt% (12 at.%) MgO powders with the addition of 4 wt% Na3AlF6in the temperature range 1300°–1600°C by using a torch-flame firing for 3 min, followed by quenching in water, while the same system under slow cooling in a furnace results in spinel containing 74–76 wt% Al2O3. Microscopic studies indicate that the alumina-rich spinel composites consist of a continuous majority spinel phase and an isolated minority corundum phase, regardless of slow cooling in a furnace or quenching in water.  相似文献   

13.
Inhibition of cubic-rhombohedral phase transformation and low-temperature sintering at 1000°C were achieved for 10-mol%-Sc2O3-doped cubic-ZrO2 by the presence of 1 mol% Bi2O3. The powders of 1-mol%-Bi2O3–10-mol%-Sc2O3-doped ZrO2 were prepared using a hydrolysis and homogeneous precipitation technique. No trace of rhombohedral-ZrO2 phase could be detected, even after sintering at 1000°–1400°C. The average grain size of the ZrO2 sintered at 1200°C was >2 μm because of grain growth in the presence of Bi3+. Cubic, stabilized Bi-Sc-doped ZrO2 sintered at 1200°C had sufficient conductivity at 1000°C (0.33 S/cm) to be used as an electrolyte for a solid-oxide fuel cell (SOFC) and at 800°C (0.12 S/cm) for an intermediate-temperature SOFC.  相似文献   

14.
The modulus of rupture of Al2O3-spinel castables containing 20 wt% Al2O3-rich MgO-Al2O3 spinel and 1.36-2.04 wt% CaO generally increases with an increase in both CaO content and temperature from 1300° to 1500°C, but it remains virtually constant from 1000° to 1300°C. Microscopic observation of the castable fired at 1500°C for 3 h reveals the growth of some CA6 crystals out of the Al2O3-rich spinel grains in the bonding matrix of the castable. The bond linkage between the CA6 and spinel grains in the matrix is believed to cause both the CaO content and temperature dependence of the hot strength of the Al2O3-spinel castables as well as the hot strength enhancement of high-Al2O3 castables with addition of Al2O3-rich spinel.  相似文献   

15.
Grain growth of ZnO during liquid-phase sintering of a ZnO-6 wt% Bi2O3 ceramic was investigated for A12O3 additions from 0.10 to 0.80 wt%. Sintering in air for 0.5 to 4 h at 900° to 1400°C was studied. The AI2O3 reacted with the ZnO to form ZnAl2O4 spinel, which reduced the rate of ZnO grain growth. The ZnO grain-growth exponent was determined to be 4 and the activation energy for ZnO grain growth was estimated to be 400 kJ/mol. These values were compared with the activation parameters for ZnO grain growth in other ceramic systems. It was confirmed that the reduced ZnO grain growth was a result of ZnAl2O4 spinel particles pinning the ZnO grain boundaries and reducing their mobility, which explained the grain-growth exponent of 4. It was concluded that the 400 kJ/mol activation energy was related to the transport of the ZnAl2O4 spinel particles, most probably controlled by the diffusion of O2- in the ZnAl2O4 spinel structure.  相似文献   

16.
The temperature dependence of bending strength, fracture toughness, and Young's modulus of composite materials fabricated in the ZrO2 (Y2O3)-Al2O3 system were examined. The addition of A1203 enhanced the high-temperature strength. Isostatically hot-pressed, 60 wt% ZrO2 (2 mol% Y2O3)/40 wt% Al2O3 exhibited an extremely high strength, 1000 MPa, at 1000°C.  相似文献   

17.
The reaction kinetics and mechanisms between 8 mol% yttria-stabilized zirconia (YSZ) and 30 mol% Sr-doped lanthanum manganite (La0.65Sr0.30MnO3, LSM) with A-site deficiency for the application of planar solid oxide fuel cells (SOFCs) were investigated. The LSM/YSZ green tapes were cofired from 1200° to 1400°C for 1 to 48 h and then annealed at 1000°C for up to 1000 h. The results showed that the diffusion of manganese cations first caused the amorphization of YSZ, and then the formation of small La2Zr2O7 (LZ) or SrZrO3 (SZ) crystals if treated for a longer time at 1400°C. The ambipolar diffusion of the Mn–O pair, transported through the migration of oxygen vacancy, plays an important role in the formation of secondary phases. The diffusion of LSM to YSZ and substitution of Mn for Zr both result in the enhanced concentration of oxygen vacancy, leading to the formation of a void-free zone (VFZ). No additional reaction products in annealed LSM/YSZ specimens, treated at 1000°C for 1000 h, were detected. The interfacial reactions, detailed reaction kinetics, and mechanisms are reported.  相似文献   

18.
High-performance anode-supported tubular solid-oxide fuel cells (SOFCs) have been successfully developed and fabricated using slip casting, dip coating, and impregnation techniques. The effect of a dispersant and solid loading on the viscosity of the NiO/Y2O3–ZrO2 (NiO/YSZ) slurry is investigated in detail. The viscosity of the slurry was found to be minimum when the dispersant content was 0.6 wt% of NiO/YSZ. The effect of sintering temperature on the shrinkage and porosity of the anode tubes, densification of the electrolyte, and performance of the cell at different solid loadings is also investigated. A Ni/YSZ anode-supported tubular cell fabricated from the NiO/YSZ slurry with 65 wt% solid loading and sintered at 1380°C produced a peak power output of ∼491 and ∼376 mW/cm2 at 800°C in wet H2 and CH4, respectively. With the impregnation of Ce0.8Gd0.2O2 (GDC) nanoparticles, the peak power density increased to ∼1104 and ∼770 mW/cm2 at 800°C in wet H2 and CH4, respectively. GDC impregnation considerably enhances the electrochemical performance of the cell and significantly reduces the ohmic and polarization resistances of thin solid electrolyte cells.  相似文献   

19.
For the first time, dense coatings have been made by the solution precursor plasma spray (SPPS) process. The conditions are described for the deposition of dense Al2O3–40 wt% 7YSZ (yttria-stabilized zirconia) coatings; the coatings are characterized and their thermal stability is evaluated. X-ray diffraction analysis shows that the as-sprayed coating is composed of α-Al2O3 and tetragonal ZrO2 phases with grain sizes of 72 and 56 nm, respectively. The as-sprayed coating has a 95.6% density and consists of ultrafine splats (1–5 μm) and unmelted spherical particles (<0.5 μm). The lamellar structure, typical of conventional plasma-sprayed coatings, is absent at the same scale in the SPPS coating. The formation of a dense Al2O3–40 wt% 7YSZ coating is favored by the lower melting point of the eutectic composition, and resultant superheating of the molten particles. Phase and microstructural thermal stabilities were investigated by heat treatment of the as-sprayed coating at temperatures of 1000°–1500°C. No phase transformation occurs, and the grain size is still in the nanometer range after the 1500°C exposure for 2 h. The coating hardness increases from 11.8 GPa in the as-coated condition to 15.8 GPa following 1500°C exposure due to a decrease in coating porosity.  相似文献   

20.
Sample disks prepared from Al2O3 (61 wt%), SiO2 (28 wt%), and Fe2O3(II wt%) powders were sintered at 1270° and 1440°C and then annealed between 1300° and 1670°C. The annealed samples consisted of mullite as the main compound with minor amounts of glass and sometimes magnetite. The iron content of the mullites decreases strongly from ∼ 10.5 wt% Fe2O3 at 1300°C to ∼ 2.5 wt% Fe2O3 at 1670°C. A complex temperature-controlled exsolution mechanism of iron from mullite is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号