首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The temperature dependence of the thermal conductivity of plasma-spray-deposited monolithic coatings, as well as multilayer coatings that consisted of Al2O3 and ZrO2 that was stabilized by 8% Y2O3 (YSZ), was investigated. The coatings exhibited a large reduction in thermal conductivity at all temperatures, when compared to the bulk monolithic Al2O3 and YSZ. This reduction was due to porosity as well as thermal resistance that was caused by interfaces in the coatings. The largest decrease in the thermal conductivity of the coatings, relative to monolithic fully dense materials, was due to splat interfaces within each layer, as well as the coating/substrate interface. On the other hand, the multilayer coatings showed little variation in the thermal conductivity, relative to the number of layers, which suggests that the influence of interlayer interfaces on heat transfer is relatively small. A one-dimensional analysis of steady-state heat transfer has been presented to illustrate the significance of porosity, splat interfaces, and interlayer interfaces, with respect to the overall thermal conductivity of multilayer coatings.  相似文献   

2.
Ionic conductivity measurements on a yttria-stabilized tetragonal zirconia polycry stall alumina composite subjected to superplastic deformation demonstrate anisotropic character. Parallel to the pressing direction, the grain-boundary resistance to oxygen ion mobility is 25% to 30% higher than that measured perpendicular to the pressing direction. The same directional dependency on the volume conductivity is observed but is less pronounced, showing approximately a 9% difference. Microstructural evidence reveals an agglomeration and elongation of alumina particles perpendicular to the pressing direction, and it is suggested that this phenomenon restricts the passage of ions parallel to the compression direction, giving rise to the anisotropic nature of the conductivity measurements.  相似文献   

3.
The initial-, intermediate-, and final-stage sintering of fine crystallite yttria-stabilized zirconia was studied. Experiments were conducted on powder lots of differing agglomerate size and one specially prepared agglomerate-free powder. Initial-stage sintering kinetics were compared with a sintering study on larger crystallite size calcia-stabilized zirconia to access the Herring scaling law. It was found that agglomerates limit attainable green density, interfere with the development of microstructure, impede initial-stage sintering kinetics, and limit the potential benefit of fine crystallites on final-stage sintering. An gglomerate free powder centrifuge-cast to 74% green density was sintered to 99.5% of theoretical density in a 1 h 1100°C cycle, which is ∼300°C lower than necessary for an agglomerated but equal crystallite size powder.  相似文献   

4.
Layered composites of alternate layers of pure Al2O3(thickness of 125 μ m) and 85 vol% Al2O3-15 vol% ZrO2 that was stabilized with 3 mol% Y2O3(thickness of 400 μ m) were obtained by sequential slip casting and then fired at either 1550° or 1700°C. Constant-strain-rate tests were conducted on these materials in air at 1400°C at an initial strain rate of 2 × 10-5 s-1. The load axis was applied both parallel and perpendicular to the layer interfaces. Catastrophic failure occurred for the composite that was fired at 1700°C, because of the coalescence of cavities that had developed in grain boundaries of the Al2O3 layers. In comparison, the composite that was fired at 1550°C demonstrated the ductility of the Al2O3+YTZP layer, but at a flow stress level that was determined by the Al2O3 layer.  相似文献   

5.
MWCNT/3Y-TZP (3 mol% yttria-stabilized tetragonal polycrystalline zirconia) composites with different multiwall carbon nanotube (MWCNT) contents were prepared by the spark plasma sintering technique. The effect of MWCNT addition on the electrical and dielectric properties of the composites at room temperature was studied. The experimental results showed that the DC conductivity of the composites demonstrated a typical percolation behavior with a very low percolation threshold between 1.0 and 2.0 wt% MWCNT content, and the dielectric constant was greatly increased when the MWCNT concentration was close to the percolation threshold, which was attributed to dielectric relaxation, the space charge polarization effect, and the percolation effect.  相似文献   

6.
The microstructures of plasma-sprayed yttria-stabilized zirconia (YSZ) coatings are complex, contributing to challenges in establishing microstructure–thermal conductivity relationships. Furthermore, the dynamic evolution of microstructure and properties during service offers a significant challenge in defining design strategies and extended coating performance. In this paper, the relationship between microstructure and thermal conductivity is investigated for three sets of plasma-sprayed YSZ coating systems prepared using different morphology powders, different particle size distributions, and controlled modification of particle states through plasma torch parameters. Both ambient and temperature-dependent thermal conductivity were conducted in the as-sprayed and thermally aged states. The results suggest that a range of thermal conductivities can be achieved from the coatings, offering potential for microstructural tailoring for desired performance. The results also demonstrate that different as-deposited microstructures display varying propensity for sintering and these attributes need to be considered in the design and manufacturing cycle. This expansive study of a range of coatings has also allowed synthesis of the results through thermal conductivity–porosity maps and has allowed elucidation of the contributing microstructural components for both the ambient and high-temperature thermal conductivity. Considering that the operating thermal transport mechanisms are different at these two temperature extremes, such mapping strategies are of value to both science and technology.  相似文献   

7.
Powders of nanocrystalline zirconia doped with 3–30 mol% alumina have been synthesized using chemical vapor synthesis (CVS). Dense or mesoporous ceramics of small and narrowly distributed grain and pore sizes in the nanometer range are obtained via pressureless vacuum sintering. The microstructural development of the doped samples is strongly dependent on the alumina content. Sintering of zirconia samples with 3 and 5 mol% alumina at temperatures of 1000°C for 1 h results in fully dense, transparent ceramics with grain sizes of 40–45 nm and homogeneous microstructures.  相似文献   

8.
Zirconia nanopowder compacts with comparable particle sizes and pore size distributions but different phase structures were prepared. The sintering behavior of monoclinic, tetragonal, and cubic zirconia nanopowders was directly compared. The densification and microstructural changes during sintering were investigated. The tetragonal and cubic nanopowders showed similar sintering behavior whereas the monoclinic nanopowder exhibited a more difficult densification and coarser microstructure compared with tetragonal and cubic powders. The differences in the densification of zirconia nanopowders resulted from significant differences in the microstructure evolution during sintering. The microstructural changes in nanopowder compacts during sintering were described and a correlation between microstructural changes and interfacial energies associated with different crystal structures was discussed.  相似文献   

9.
Powders of In2O3–Y2O3"dual stabilized"ZrO2 (IYSZ) were prepared using sol-gel procedures and tested for resistance to destabilization by molten NaVO3 at 700° and 900°C. IYSZ powders with stabilizer oxide compositions ranging from 100% down to about 50% In2O3 were superior to 100%-Y2O3-stabilized ZrO2 (YSZ) in resistance to destabilization, especially at 700°C. Small additions of Y2O3 were speculated to reduce the acidity of the ZrO2 oxide anion lattice, and, therefore, improve bonding of In2O3 (more acidic than Y2O3) into the ZrO2 lattice.  相似文献   

10.
The low bonding strength between hydroxyapatite (HA) and the metal substrate interface of plasma-sprayed HA coating has been a point of potential weakness in its application as a biomedical prosthesis. In the present study, yttria-stabilized (8 wt%) zirconia (YSZ) has been used to enhance the mechanical properties of HA coatings. The effects of YSZ additions (in the range 10–50 wt%) on the phase composition, microstructure, bond strength, elastic modulus, and fracture toughness of plasma-sprayed HA/YSZ composite coatings have been studied. The results indicated that decomposition of HA during plasma spraying was reduced significantly with the addition of zirconia. The higher the zirconia content, the lower the amount of calcium oxide, tricalcium phosphate, and tetracalcium phosphate formed in the coatings. In addition, there was a trace of calcium zirconate formed when less than 30 wt% zirconia was present. A solid solution of HA mixed with YSZ formed during plasma spraying; however, the amount of unmelted particles increased as the zirconia increased. The mechanical properties of the HA/YSZ composite coatings, such as bond strength, elastic modulus, and fracture toughness, increased significantly as the contents of zirconia increased.  相似文献   

11.
The effect of sintering atmosphere on the final density and electrical properties of alumina compacts has been investigated using two different oxygen pressures: air and CO/CO2. Measuring of electrical behavior has been considered a tool for determining the mechanism responsible for densification. Finally, the importance of a reducing atmoshphere on the electrical behavior of polycrystalline alumina is pointed out.  相似文献   

12.
李宏杰 《陶瓷》2010,(12):11-14
烧结温度对氧化铝基板性能有重要影响,随着烧结温度的提高,瓷片的体积电阻率、体积密度、击穿强度升高,抗折强度呈先上升后下降趋势,而介电常数、介质损耗角正切则是先降低后升高。得出最佳的烧结条件为1570℃保温2h。  相似文献   

13.
The isothermal sintering behavior in 3 mol% yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) was investigated to clarify phase-separation and grain-growth mechanisms during sintering. In the Y-TZP sintered at 1300°C for 2 h, the Y3+ ion distribution of grain interiors in Y-TZP was nearly homogeneous, but Y3+ ions segregated along grain boundaries within a width of about 10 nm. When the holding time increased from 2 to 50 h, the cubic-phase regions with high Y3+ ion concentrations were clearly formed in the grain interiors adjacent to the grain boundaries, though the average grain size hardly increased. This result shows that the cubic-phase regions were formed without grain growth, which can be explained by the grain-boundary segregation-induced phase transformation mechanism. In the Y-TZP sintered at 1500°C for 2 h, the cubic-phase regions were already formed, and both of the cubic-phase region and average grain size increased with increasing holding time. This grain-growth behavior can be interpreted by the third-power growth low derived based on the solute drag theory, which indicates that the cubic-phase regions do not effectively act as the pinning points.  相似文献   

14.
Compacts prepared from three differently agglomerated powders were studied. Hg-penetration results and SEM observations were employed to compare the uniformity of powder compacts and to investigate the pore-size evolution and the microstructural development during sintering. It was found that the more nonuniform the powder compact, the higher the degree of pore growth in the initial and at the beginning of intermediate stages of sintering. Moreover, a higher sintering temperature and a nonuniform microstructure with larger grains could not be avoided. Microstresses might develop because of the differential shrinkage, but they would be released thereafter via the change of grain morphology. It was observed that the aggregate and pore-boundary separation might not be the primary reason for the initiation of discontinuous grain growth.  相似文献   

15.
Nanostructured alumina—20 vol% 3-yttria-stabilized zirconia (3YSZ) powder composites were synthesized by the wet-milling technique. The starting materials were a mixture of alumina micropowder and 3YSZ nanopowders. The mixtures were optimized for good sintering behaviors, high hardness, and toughness. Nano-crystalline grains were obtained after milling for 24h. The nano-structured powders were then processed to full density at different temperatures by high-frequency induction heat sintering. Effects of sintering temperature on the hardness, toughness, and microstructure properties have been studied. Al2O3–3YSZ composites with higher hardness, toughness, and smaller grain size have successfully been developed at relatively low temperatures by this technique.  相似文献   

16.
The effect of DC electric field on sintering, and on the electrical conductivity of undoped rutile, TiO2 (99.99%), has been investigated at fields ranging from 0 V to 1000 V/cm. The experiments were carried out at a constant heating rate of 10°C/min with the furnace temperatures reaching up to 1150°C. The sintering behavior falls into two regimes: at lower fields, up to 150 V/cm, sintering is enhanced, but densification occurs gradually with time (Type A or FAST sintering). At higher fields sintering occurs abruptly, and is accompanied by a highly nonlinear increase in conductivity, which has been called flash sintering (Type B or FLASH sintering). Arrhenius plots of conductivity yield an activation energy of 1.6 eV in Type A and 0.6 eV in Type B behavior; the first is explained as ionic and the second as electronic conductivity. The evolution of grain size under both types of sintering behavior are reported. These results highlight that the dominant mechanism of field‐assisted sintering can change with the field strength and temperature. We are in the very early stages of identifying these mechanisms and mapping them in the field, frequency, and temperature space.  相似文献   

17.
Several metal oxide additions were made to typical 99 and 96% alumina compositions to study their effect on the electrical conductivity of alumina from 500° to 1400°C. The metal oxide additions investigated were CO2O3, Cr2O3, CuO, Fe2O3, MnO2, NiO, and TiO2. Using a guarded two-probe technique, dc resistivities were measured on nonporous ceramic specimens. Additions of 0.5 to 2 mole % Co2O3, 2 mole % CuO, 1 mole % Fe2O3, or 2 mole % NiO to either a 96 or a 99% alumina composition increased the electrical resistivity. The addition of 1 mole % Cr2O3 to either a 96 or a 99% alumina showed practically no change in the resistivity. All changes in resistivity seemed to be structure dependent.  相似文献   

18.
Uniaxial dry pressing (DP) and slip casting (SC) were used to form green bodies of nanocrystalline 8 mol% yttria-stabilized zirconia powder processed via the glycine-nitrate combustion method. The SC method was shown to be a more efficient, yielding more homogenous green bodies with higher green density (60% theoretical density) which contained smaller pores with narrower distribution. Improved green properties resulted in lowering the sintering temperature of SC bodies by about 200°C compared with DP compacts. Consequently, the grain growth in sintered bodies formed by SC was relatively abated. By taking the benefits of the wet conformation method, the final grain size of nearly full dense (>97% TD) structures was reduced by 39% (i.e. from 2.15 to 1.3 μm). To reveal the effect of sintering technique, DP bodies were sintered via both microwave and two-step sintering methods. While the grain size of two-step sintered samples was <300 nm, sintering via microwave radiation yielded a nearly full dense structure with a mean grain size of 0.9 μm. The results show that conventionally sintered SC bodies posses higher indentation fracture toughness (FT) (∼3 MPa·m1/2) compared with DP samples (1.6 MPa·m1/2). Interestingly, it was shown that, without applying any modified sintering technique, the hardness and FT of SC bodies with coarser structures are completely close to those of samples sintered via microwave heating.  相似文献   

19.
20.
Yttria-doped tetragonal zirconia containing 2 and 3 mol% Y2O3 (Y-TZP), and CeO2-doped Y-TZP containing 0 to 12 mol% CeO2 were sintered at 1350°C in a tetragonal single-phase field for 2 h in air, and the degradation behavior at low temperature in air and in hot water was observed. X-ray photoelectron spectroscopy studies on the surface of hydrothermally treated samples show evidence for the formation of a YO(OH) species, along with the simultaneous formation of purely tetragonal zirconia nuclei that retain their coherence in the Y-TZP matrix. Above a critical size, the tetragonal nuclei spontaneously transform to a monoclinic structure, giving rise to macro- and microcracking. The strong tetragonal grains degrade to produce a spalling phenomenon that facilitates further degradation. Y-TZP ceramics alloyed with adequate amounts of CeO2 show no tetragonal-to-monoclinic transformation after hydrothermal treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号