首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An eight channel stimulation electrode has been developed which can be inserted into the human scala tympani via the round window. This electrode is part of a neuroprosthesis aiming at the restoration of some hearing in cases of sensorineural deafness by electrical stimulation of the auditory nerve.  相似文献   

2.
Strategies to improve electrode positioning and safety in cochlear implants   总被引:1,自引:0,他引:1  
An injection-molded internal supporting rib has been produced to control the flexibility of silicone rubber encapsulated electrodes designed to electrically stimulate the auditory nerve in human subjects with severe to profound hearing loss. The rib molding dies, and molds for silicone rubber encapsulation of the electrode, were designed and machined using AutoCad and MasterCam software packages in a PC environment. After molding, the prototype plastic ribs were iteratively modified based on observations of the performance of the rib/silicone composite insert in a clear plastic model of the human scala tympani cavity. The rib-based electrodes were reliably inserted farther into these models, required less insertion force and were positioned closer to the target auditory neural elements than currently available cochlear implant electrodes. With further design improvements the injection-molded rib may also function to accurately support metal stimulating contacts and wire leads during assembly to significantly increase the manufacturing efficiency of these devices. This method to reliably control the mechanical properties of miniature implantable devices with multiple electrical leads may be valuable in other areas of biomedical device design.  相似文献   

3.
We have proposed the tripolar electrode stimulation method (TESM) for narrowing the stimulation region and continuously moving the stimulation site for cochlear implants. The TESM stimulates the auditory nerve array using three adjacent electrodes which are selected among the electrodes of an electrode array within the lymphatic fluid. Current is emitted from each of the two lateral electrodes and received by the central electrode. The current received by the central electrode is made equal to the sum of the currents emitted from the lateral electrodes. In this paper, we evaluate whether or not TESM works according to a theory which is based on numerical analysis using an electrical equivalent circuit model of the auditory nerve fibers. In this simulation, the sums of the excited model fibers are compared to the compound action potentials (CAP's) which we obtained through animal experiments. To identify the main parameter while maintaining the amplitude of the CAP (the sum of the fired fibers), we assumed the presence of some parameters from the radial current density profile. In the case of the width value among the parameters being kept constant, the amplitude of the CAP was almost constant; thus, the number of the fired fibers was also almost constant. The width value equals the distance between the points at which the profile of the radial current density of the electrode array and the line of the radial threshold current density of the electrode array intersect. It is possible to determine the measure of the stimulation region or site by controlling the width value and the ratios of the currents emitted from the lateral electrodes. As a result, we succeeded in narrowing the stimulation region by controlling the sum of the currents emitted from the two lateral electrodes. Also we succeeded in continuously moving the stimulation site by modifying the currents emitted from the two lateral electrodes.  相似文献   

4.
Multichannel electrical stimulation of the auditory nerve is demonstrated in a cat model using photolithographic electrode arrays. Evoked potentials from the auditory cortex are used to map the location of fibers activated by different electrodes in the array. The evoked responses obtained are equivalent to those produced by fine wire electrodes currently used for functional stimulation of the auditory system.  相似文献   

5.
An advanced multiple channel cochlear implant   总被引:4,自引:0,他引:4  
An advanced multiple channel cochlear implant hearing prosthesis is described. Stimulation is presented through an array of 20 electrodes located in the scala tympani. Any two electrodes can be configured as a bipolar pair to conduct a symmetrical, biphasic, constant-current pulsatile stimulus. Up to three stimuli can be presented in rapid succession or effectively simultaneously. For simultaneous stimulation, a novel time-division current multiplexing technique has been developed to obviate electrode interactions that may compromise safety. The stimuli are independently controllable in current amplitude, duration, and onset time. Groups of three stimuli can be generated at a rate of typically 500 Hz. Stimulus control data and power are conveyed to the implant through a single transcutaneous inductive link. The device also incorporates a telemetry system that enables electrode voltage waveforms to be monitored externally in real time. The electronics of the implant are contained almost entirely on a custom designed integrated circuit. Preliminary results obtained with the first patient to receive the advanced implant are included.  相似文献   

6.
The design and fabrication of flexible thin-film microelectrode arrays for use in a cochlear prosthesis are described. The electrode array is designed to be inserted through the round window of the cochlea into the spiral scala tympani chamber of the cochlea. A lifetime of decades under stimulation is sought. The electrode array is comprised of photolithographically defined platinum-on-tantalum conductors sandwiched between polyimide layers. A liquid polyimide is used, which polymerizes in two stages. After the first stage of curing, the polyimide is susceptible to photolithographic etching, allowing patterned access holes to be cut into the top layer of the insulating sandwich. After the second cure, the polymer becomes inert biocompatible Kapton. The processing techniques and the electrode test results are presented.  相似文献   

7.
A vowel discrimination test using a tactual vocoder was administered and the results were compared to that of an eight-channel cochlear implant. Both the tactile vocoder and the cochlear implant divided the speech signals into 16 frequency components using band-pass filters and lateral inhibition circuits. In the tactile vocoder, these 16 components were converted into a vibration with 200 Hz frequency and applied to a 3 x 16 element vibrator array using bimorph piezoelectric elements. The vibratory patterns were sensed on the fingertip. In the cochlear implant, the 16 components were reduced to eight current stimulation signals, consisting of biphasic pulses with 200 Hz frequency, which were applied to an eight-channel electrode array implanted in the scala tympani. The electrode array passed through the round window into the scala tympani to a depth of 23 mm. These psychophysical experiments investigate the ability of human subjects to discriminate synthetic vowels as a function of the number of channels employed. The results suggested that an eight-channel and a 16-channel tactile vocoder provided essentially the same discrimination scores. However, the ability to discriminate synthetic vowels decreased rapidly when less than eight channels were employed. The ability of an eight-channel tactile vocoder is expected to be better than that of the eight-channel cochlear implant because it is supposed that vowel discrimination is degraded by a phenomenon known as "current spreading" in the case of cochlear stimulation. However, the comparison between the two devices was not done on the cochlear implant subject.  相似文献   

8.
A tantalum-on-sapphire microelectrode array   总被引:1,自引:0,他引:1  
The design and fabrication are described of a new microelectrode array for the production of localized electrical excitation in nerve fibers, in particular in the auditory nerve. The sapphire substrate was chosen for its electrical (insulating) and mechanical properties, tantalum was chosen as the conductor metal because of its self-passivating characteristics, and platinum as the stimulation electrode material because of its resistance to electrolysis. Experimental measurements are presented to show the effectiveness of Ta2O5as an insulator in biphasic charge delivery systems, and the effectiveness of conformal dielectric overcoating of the Ta2O5in reducing capacitive signal leakage is demonstrated. The electrochemical properties of the platinum-electrolyte interface are shown to provide a satisfactory model on which to estimate the charge delivery capabilities of the electrodes. Finally, the sequence of process-compatible steps for fabricating the microelectrode array, from the first tantalum deposition to the final overcoating are detailed.  相似文献   

9.
The safety and reliability of a system for long-term intramuscular electrical activation of the phrenic nerve was evaluated in seven dogs. In this system, electrodes are implanted bilaterally into the diaphragm without directly contacting the phrenic nerve using a laparoscope to direct placement. Five dogs underwent chronic bilateral intramuscular diaphragm stimulation (IDS) for 61 to 183 days at stimulus parameters selected to evoke at least 120% of the animal's basal ventilation. Two dogs maintained as controls did not undergo chronic stimulation. The safety and reliability of the system was evaluated in terms of tissue responses to the electrode, alterations in diaphragm muscle, pulmonary function, electrode reliability, and cardiac activation. No adverse responses to the electrode or stimulation were found. The histochemistry of chronically stimulated diaphragm suggested transformation towards type I (oxidative metabolism) muscle fibers. Two IDS electrodes dislodged out of a total of 32 IDS electrodes implanted. Both electrodes dislodged within seven days of implant. All IDS electrodes had stable and repeatable recruitment properties. No IDS electrode mechanical failures were found and no electrode corrosion was observed. It is concluded from these experiments that intramuscular activation of the phrenic nerve will present a minimal risk to human patients who are good candidates for clinical studies using this technique  相似文献   

10.
Cochlear implants are electrically driven in monopolar, bipolar, or common ground mode. Ideally, a quadrupolar mode is created with three colinear electrodes, where the outer poles are half the inverse polarity value of the center electrode. The resulting field is highly focused. Models of point sources show that the quadrupolar paradigm offers a greater choice of parameters to shape the field. Simulation with a lumped-parameter model of the cochlea confirms the focusing action of the quadrupole in the layers of the inner ear. Field measurements in saline solution and in the scala tympani of guinea pigs show that focusing occurs with the quadrupolar mode. It is conceivable that quadrupolar stimulation will affect the pitch place coding, reduce channel interaction and limit facial or tactile stimulation induced by current spread  相似文献   

11.
Correct placement of the electrode is crucial for cochlear implantation (CI) surgery. It determines the access to the auditory nerve and subsequent hearing performance. Here, we propose an objective measures tool that can partially verify the electrode position. The intracochlear spread of the electrical fields is measured and analyzed by means of multidimensional scaling resulting in an intuitive visual representation. The user can then detect major issues, such as electrode foldover or ossification. Other implantation issues, such as electrode migration into the scala vestibuli, may not significantly alter the electrical conduction pattern and remain undetected. Still, as the measurement is quick and readily available, it may be a valuable intraoperative verification tool.  相似文献   

12.
Those suffering from a severe to profound sensorineural hearing loss can obtain substantial benefit from a cochlear implant prosthesis. An electrode array implanted in the inner ear stimulates auditory nerve fibers by direct injection of electrical current. A major limitation of today's technology is the imprecise control of intracochlear current flow, particularly the relatively wide spread of neural excitation. A better understanding of the intracochlear electrical fields is, therefore, required. This paper analyzes the structure of intracochlear potential measurements in relation to both the subject's anatomy and to the properties of the electrode array. An electrically equivalent network is proposed, composed of small lumped circuits for the interface impedance and for the cochlear tissues. The numerical methods required to estimate the model parameters from high-quality electrical potential recordings are developed. Finally, some models are presented for subjects wearing a Clarion CII device with a HiFocus electrode and discussed in terms of model reliability.  相似文献   

13.
Neural prostheses for restoring lost functions can benefit from selective activation of nerves with limited number and density of electrodes. Here, we show by simulations and animal experiments that multipoint simultaneous stimulation with a surface electrode array can selectively activate nerves in a bundle at a desired location in between the array or at a desired depth, which are referred to as lateral or depth-wise gating stimulation, respectively. The stimulation broadly generates action potentials with cathodic source electrodes, and simultaneously blocks unnecessary propagation with downstream anodic gate electrodes. In general, stimulation with a small diameter electrode can affect a nearly hemispherical region, while a large electrode is effective at a more vertically compressed region, i.e., a surface of nerve bundle. The gating stimulation takes advantage of the size effects by utilizing an asymmetrical electrode array. The array of the lateral gating stimulation is designed to have four electrodes; a pair of large source electrodes and a pair of small gate electrodes. The depth-wise gating stimulation array consists of two electrodes; a large gate and small source electrodes. The simulation first demonstrated that appropriate combination of currents at the source and gate electrodes can change recruitment patterns of nerves with lateral or depth-wise selectivity as desired. We then applied the lateral gating stimulation on the rat spinal cords and obtained a preliminary support for the feasibility.  相似文献   

14.
The objective of this research was to develop a technique to excite selectively nerve fibers distant from an electrode without exciting nerve fibers close to the electrode. The shape of the stimulus current waveform was designed based on the nonlinear conductance properties of neuronal sodium channels. Models of mammalian peripheral myelinated axons and experimental measurements on cat sciatic nerve were used to determine the effects of subthreshold polarization on neural excitability and recruitment. Subthreshold membrane depolarization generated a transient decrease in neural excitability and thus an increase in the threshold for stimulation by a subsequent stimulus pulse. The decrease in excitability increased as the duration and amplitude of the subthreshold depolarization were increased, and the increase in threshold was greater for fibers close to the electrode. When a depolarizing stimulus pulse was applied immediately after the subthreshold depolarization, nerve fibers far from the electrode could be stimulated without stimulating fibers close to the electrode. Subthreshold depolarizing prepulses inverted the current-distance relationship and allowed selective stimulation of nerve fibers far from the electrode  相似文献   

15.
Electrical extracellular stimulation of peripheral nerve activates the large-diameter motor fibers before the small ones, a recruitment order opposite the physiological recruitment of myelinated motor fibers during voluntary muscle contraction. Current methods to solve this problem require a long-duration stimulus pulse which could lead to electrode corrosion and nerve damage. The hypothesis that the excitability of specific diameter fibers can be suppressed by reshaping the profile of extracellular potential along the axon using multiple electrodes is tested using computer simulations in two different volume conductors. Simulations in a homogenous medium with a nine-contact electrode array show that the current excitation threshold (Ith) of large diameter axons (13-17 microm) (0.6-3.0 mA) is higher than that of small-diameter axons (2-7 microm) (0.4-0.7 mA) with 200-microm axon-electrode distance and 10-micros stimulus pulse. The electrode array is also tested in a three-dimensional finite-element model of the sacral root model of dog (ventral root of S3). A single cathode activates large-diameter axons before activating small axons. However, a nine-electrode array activates 50% of small axons while recruiting only 10% of large ones and activates 90% of small axons while recruiting only 50% of large ones. The simulations suggest that the near-physiological recruitment order can be achieved with an electrode array. The diameter selectivity of the electrode array can be controlled by the electrode separation and the method is independent of pulse width.  相似文献   

16.
Multiunit recordings were made in anesthetized cats with chronically implanted intrafascicular electrodes over a period of six months. Neural signals recorded with these electrodes consisted of activity in sensory fibers innervating a variety of cutaneous mechanoreceptors. Mechanical stimuli were used to selectively activate individual nerve fibers, and the receptive field and receptor type were identified for each unit. Over a period of six months, there was a net shift in the recorded population, but the electrodes continued to provide a representative sample of the activity in the fascicle as a whole. The total number of units from which activity could be recorded remained roughly constant with time, and individual units persisted in the recordings for up to six months. These results indicate that intrafascicular electrodes could be used to sample information carried by individual somatosensory fibers on a long term basis.  相似文献   

17.
Direct and nondirect nerve stimulation modes of the thoraco-dorsal nerve (TDN) leading to the latissimus dorsi muscle (LDM) were evaluated by using nerve cuff electrodes (NCE) and intramuscular electrodes (IME), respectively. Following electrode implantation, the LDM was chronically stimulated for two months to induce muscle transformation to oxidative, fatigue-resistant type I muscle fibers. Threshold and impedance values were measured regularly to establish the stability of the implants. The LDM was then dissected, shaped into a ventricle, subjected to a hydraulic load and stimulated using a controlled-voltage pulse-train stimulator with adjustable parameters. Electrical input and hydraulic output variables were measured to obtain the recruitment characteristics and to compare the efficiency of the two types of electrodes. Results indicate a tradeoff between the NCE's lower threshold, higher recruitment, and lower energy consumption at saturation, and the IME's greater mechanical stability and better long-term reproducibility.  相似文献   

18.
Artificial electrical stimulation of peripheral nerves needs the development of multielectrode devices which stimulate individual fibers or small groups in a selective and sensitive way. To this end, a multielectrode array in silicon technology has been developed, as well as experimental paradigms and model calculations for sensitivity and selectivity measures. The array consists of twelve platinum electrode sites (10 x 50 microns at 50 microns interdistance) on a 45 microns thick tip-shaped silicon substrate and a Si3N4 insulating glass cover layer. The tip is inserted in the peroneal nerve of the rat during acute experiments to stimulate alpha motor fibers of the extensor digitorum longus muscle. Sensitivity calculations and experiments show a cubic dependence of the number of stimulated motor units on current amplitude of the stimulatory pulse (recruitment curves), starting at single motor level. Selectivity was tested by a method based on the refractory properties of neurons. At the lowest stimulus levels (for one motor unit) selectivity is maximal when two electrodes are separated by 200-250 microns, which was estimated also on theoretical grounds. The study provides clues for future designs of two- and three-dimensional devices.  相似文献   

19.
Electrodes designed for in vitro peripheral nerve studies were fabricated by laminating Plexiglas?sheets and silver or platinum foil. Many tissue-electrode interface geometries and electrode separations were obtained. A nerve chamber was developed to support the laminated electrodes at selected positions in precise planar alignment.  相似文献   

20.
The flat interface nerve electrode (FINE) is an attempt to improve the stimulation selectivity of extraneural electrodes. By reshaping peripheral nerves into elliptical cylinders, central fibers are moved closer to the nerve-electrode interface, and additional surface area is created for contact placement. The goals of this study were to test the hypothesis that greater nerve reshaping leads to improved selectivity and to examine the chronic recruitment properties of the FINE. Three FINEs were developed to reshape peripheral nerves to different degrees. Four electrodes of each type were implanted on the sciatic nerves of 12 cats and tested for selectivity over at least three months. There was physiologic evidence of nerve injury in two cats with the tightest cuffs, but the other animals behaved normally. All cuff types were capable of selectively activating branches of the sciatic nerve, as well as groups of fibers within branches. The electrodes that moderately reshaped the nerves demonstrated the most selectivity. Both the selectivity measurements and the recruitment curve characteristics were stable throughout the implant period. From an electrophysiological standpoint, the FINE is a viable alternative for neuroprosthetic devices. A histological analysis of the nerves is under way to evaluate the safety of the FINE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号