首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
BACKGROUND: Ischemia-reperfusion injury after organ transplantation is a major cause of delayed graft function. We showed earlier that antisense oligodesoxynucleotides (ODN) for intercellular adhesion molecule-1 (ICAM-1) ameliorate reperfusion injury after acute ischemia. This study tested the hypothesis that antisense ODN for ICAM-1 prevents ischemia-reperfusion injury and facilitates immediate graft function in a rat autotransplantation model. METHODS: Both kidneys were removed from male Lewis rats and re-implanted the left kidney after 30 minutes of cold ischemia time. The warm ischemia time was 60 minutes. Sham operated, uninephrectomized animals served as controls for renal function and histology. ICAM-1 antisense ODN (5 mg/kg), reverse ODN, or saline-vehicle were administered to donor animals i.v. six hours before autotransplantation. Glomerular filtration rate (insulin clearance), and serum creatinine concentrations were measured 24 hours post-transplantation. Tubular necrosis severity was assessed by histological grading scale. ICAM-1 expression was determined by immunohistochemistry and Western blot. RESULTS: Antisense ODN decreased ICAM-1 expression and leukocyte infiltration significant. Antisense ODN-treated animals showed significantly less tubular necrosis, than controls. Serum creatinine of antisense ODN-treated animals (N = 6) was 0.55 +/- 0.02 mg/dl compared to 1.92 +/- 0.07 mg/dl in reverse ODN-treated controls (N = 6; P < 0.01), 24 hours after transplantation. Antisense ODN-treated animals had normal GFR (0.93 +/- 0.07 ml/min/kidney wt) compared to sham-operated animals (0.95 +/- 0.09 ml/min/kidney wt), while autotransplanted animals treated with reverse ODN or saline-vehicle were all anuric. The ischemia-reperfusion-induced up-regulation of MHC class II was totally prevented by antisense ODN. CONCLUSIONS: ICAM-1 inhibition ameliorates ischemia-reperfusion injury and prevents delayed graft function. Antisense ODN-treatment of donors or donor organs for ICAM-1 may be useful for the prevention of reperfusion injury in human renal transplantation.  相似文献   

4.
5.
BACKGROUND: Hepatic graft reperfusion is associated with inflammatory processes of unknown relevance to the fate of graft. This study aimed to clarify this relevance by histochemical analyses of human hepatic grafts. METHODS: Paired tissue samples were taken at the end of cold preservation and 2 hr after reperfusion (n=39). From six additional grafts, biopsies were performed at the end of cold preservation only. Injury or inflammatory markers of sinusoidal endothelium (von Willebrand factor-related antigen [vWF]), Kupffer cells (25F9), platelets (CD62), neutrophil leukocytes (CD11b), interleukin (IL)-1beta, intercellular adhesion molecule (ICAM)-1, and HLA-DR were evaluated semiquantitatively by indirect immunoperoxidase staining. Steatosis was also evaluated by hematoxylin and eosin staining. RESULTS: vWF, CD62+ platelet aggregation, CD11b+ leukocytes, and IL-1beta levels increased after reperfusion, and these levels correlated with prereperfusion levels. Not only vWF, CD62+ platelets, CD11b+ leukocytes, IL-1beta, ICAM-1, and steatosis after reperfusion, but also IL-1beta, ICAM-1, and steatosis before reperfusion correlated with postoperative peak transaminase. Furthermore, vWF, CD11b+ leukocytes, 25F9+ macrophages, and ICAM-1 after reperfusion were associated with primary graft nonfunction and strong expressions of ICAM-1 or HLA-DR with early acute rejection. Although some markers (IL-1beta, CD62+ platelets, and CD11b+ leukocytes) correlated with preharvesting parameters (donor age or length of intensive care unit stay), none showed any significant correlation with cold preservation. CONCLUSION: Synergistic inflammatory events in the hepatic graft at reperfusion, which have a significant impact on the later clinical course, are largely defined and precipitated by injury or activation of nonparenchymal cells preceding reperfusion or even graft harvesting.  相似文献   

6.
BACKGROUND: Healing after myocardial infarction is characterized by the presence of macrophages in the infarcted area. Since augmented monocyte influx has been implicated as a potential mechanism for improved healing after reperfusion, we wished to study the induction of monocyte chemoattractant protein-1 (MCP-1) during reperfusion. METHODS AND RESULTS: The cDNA for MCP-1 was cloned from a canine jugular vein endothelial cell (CJVEC) library and exhibited 78% identity with the deduced amino acid sequence of human MCP-1. Samples of myocardium were taken from control and ischemic segments after 1 hour of ischemia and various times of reperfusion; total RNA was isolated from myocardial samples and probed with a cDNA probe for canine MCP-1. Induction of MCP-1 mRNA occurred only in previously ischemic segments within the first hour of reperfusion, peaked at 3 hours, and persisted throughout the first 2 days of reperfusion. In the absence of reperfusion, no significant MCP-1 induction was seen. Both ischemic (but not preischemic) cardiac lymph and human recombinant TNF-alpha induced MCP-1 in CJVECs. MCP-1 was identified by immunostaining on infiltrating cells and venular (but not arterial) endothelium by 3 hours. In contrast, in situ hybridization showed MCP-1 mRNA to be confined to the endothelium of small veins (venules) 10 to 70 microns in diameter. CONCLUSIONS: MCP-1 mRNA is induced in the endothelium of a specific class of small veins immediately after reperfusion. MCP-1 induction is confined to the previously ischemic area that has been reperfused. We suggest a significant role for MCP-1 in monocyte trafficking in the reperfused myocardium.  相似文献   

7.
In rats, we characterized the mediators of lung reperfusion injury after ischemia. Animals underwent left lung ischemia. After 90 minutes of ischemia, reperfusion for up to 4 hours was evaluated. Lung injury, as determined by vascular leakage of serum albumin, increased in ischemic-reperfused animals when compared with time-matched sham controls. Injury was biphasic, peaking at 30 minutes and 4 hours of reperfusion. The late but not the early phase of reperfusion injury is known to be neutrophil dependent. Bronchoalveolar lavage of ischemic-reperfused lungs at 30 minutes and 4 hours of reperfusion demonstrated increased presence of serum albumin, indicative of damage to the normal vascular/airway barrier. Lung mRNA for rat monocyte chemoattractant protein-1 and tumor necrosis factor-alpha peaked very early (between 0.5 and 1.0 hour) during the reperfusion process. Development of injury was associated with a decline in serum complement activity and progressive intrapulmonary sequestration of neutrophils. Administration of superoxide dismutase before reperfusion resulted in reduction of injury at 30 minutes of reperfusion. Complement depletion decreased injury at both 30 minutes and 4 hours of reperfusion. Requirements for tumor necrosis factor-alpha, interferon-gamma, and monocyte chemoattractant protein-1 for early injury were shown whereas only tumor necrosis factor-alpha was involved at 4 hours. We propose that acute (30-minute) lung injury is determined in large part by products of activated lung macrophages whereas the delayed (4-hour) injury is mediated by products of activated and recruited neutrophils.  相似文献   

8.
The present study was designed to evaluate the effect of cyclosporin A in a rat model of myocardial ischaemia reperfusion injury (MI/R). Anaesthetized rats were subjected to total occlusion (20 min) of the left main coronary artery followed by 5 h reperfusion (MI/R). Sham myocardial ischaemia-reperfusion rats (Sham MI/R) were used as controls. Myocardial necrosis, myocardial myeloperoxidase activity (MPO), serum creatinine phosphokinase activity (CPK), serum tumor necrosis factor (TNF-alpha), cardiac mRNA for TNF-alpha, cardiac intercellular adhesion molecule-1 (ICAM-1) immunostaining and myocardial contractility (left ventricle dP/dtmax) were evaluated. Myocardial ischaemia plus reperfusion in untreated rats produced marked myocardial necrosis, increased serum CPK activity and myeloperoxidase activity (a marker of leukocyte accumulation) both in the area-at-risk and in the necrotic area, reduced myocardial contractility and induced a marked increase in the serum levels of the TNF-alpha. Furthermore increased cardiac mRNA for TNF-alpha was measurable within 10 to 20 min of left main coronary artery occlusion in the area-at-risk and increased levels were generally sustained for 0.5 h. Finally, myocardial ischaemia-reperfusion injury increased ICAM-1 staining in the myocardium. Administration of cyclosporin A (0.25, 0.5 and 1 mg/kg as an i.v. infusion 5 min after coronary artery occlusion) lowered myocardial necrosis and myeloperoxidase activity in the area-at-risk and in the necrotic area, decreased serum CPK activity, increased myocardial contractility, reduced serum levels of TNF-alpha and the cardiac cytokine mRNA levels, and blunted ICAM-1 immunostaining in the injured myocardium. The data suggest that cyclosporin A suppresses leukocyte accumulation and protects against myocardial ischaemia-reperfusion injury.  相似文献   

9.
BACKGROUND & AIMS: Neutrophils are important in the development of tissue injury induced by ischemia-reperfusion. The ability of an inhibitor of neutrophil elastase (ONO-5046) to protect against ischemia-reperfusion injury in rat liver was investigated by measuring serum concentrations of cytokine-induced neutrophil chemoattractant. METHODS: Liver ischemia was induced in rats by occluding the portal vein for 30 minutes, and ONO-5046 or anticoagulants were injected intravenously 5 minutes before vascular clamping. RESULTS: Serum concentration of cytokine-induced neutrophil chemoattractant increased after reperfusion, reached a maximum at 6 hours, and then gradually decreased. However, pretreatment of animals with heparin (50 U/kg), antithrombin III (250 U/kg), or ONO-5046 (10 mg/kg) resulted in significantly smaller increases in the serum concentration of cytokine-induced neutrophil chemoattractant after reperfusion. Pretreatment with both ONO-5046 and heparin, or both ONO-5046 and antithrombin III, produced additive effects. Pretreatment of rats with both ONO-5046 and heparin or both ONO-5046 and antithrombin III also inhibited the increase in cytokine-induced neutrophil chemoattractant mRNA in liver. These combined treatments significantly reduced the increases in both the number of neutrophils accumulated in the liver and the hepatic activity of myeloperoxidase. CONCLUSIONS: Cytokine-induced neutrophil chemoattractant production after ischemia-reperfusion in the liver is mediated by neutrophil elastase and activation of coagulation within the hepatic microcirculation.  相似文献   

10.
Injury to the central nervous system (CNS) results in inflammation, increased trafficking of leukocytes into the CNS, induction of cytokines, and exacerbation of the primary injury. The increased trafficking of neutrophils into the CNS has been described following a number of injury models including stab, stroke, and excitotoxin-induced injury. This enhanced trafficking has largely been ascribed to the adhesion molecule intercellular adhesion molecule-1 (ICAM-1, CD54). In the current study, we wished to determine if the inflammation caused by irradiation of the CNS resulted in a similar induction of ICAM-1. C3H/HeJ mice were irradiated using gamma irradiation aimed over the right cerebral hemisphere. The relative induction of ICAM-1 mRNA levels was determined using quantitative RT-PCR 6 hours following irradiation with either 0, 5, 15, 25 or 35 Gy. ICAM-1 message was seen to exhibit a normal dose response curve with increasing mRNA levels seen at 15 Gy and higher. To determine the cellular distribution of the ICAM-1 protein following irradiation, mice were sacrificed at 4 hrs, 24 hrs, 48 hrs and 7 days following 25 Gy irradiation and the tissue was processed for ICAM-1 immunocytochemistry. ICAM-1 staining was seen to increase in both endothelial cells and astrocytes beginning as early as 4 hrs. The staining intensity continued to increase throughout the 7 day period observed. Together, these results suggest that irradiation of the CNS causes a rapid induction of both ICAM-1 mRNA and protein. This suggests that increased leukocyte trafficking into the CNS may exacerbate the inflammation induced by radiation injury.  相似文献   

11.
BACKGROUND/PURPOSE: Endothelial cell adhesion molecules (ECAMs) are felt to play an important role in ischemia/reperfusion (I/R) injury by causing adhesion of leukocytes to endothelial cells. It is possible that ECAMs play a role in multiple organ system failure. ICAM-1 is one of the adhesion molecules that has been shown to be upregulated in response to cytokines. This upregulation leads to leukocyte endothelial cell interaction (adhesion) and to neutrophil infiltration of the affected tissue. The purpose of our study was to measure ICAM-1 expression in the liver and other organs after hepatic ischemia/reperfusion (I/R). METHODS: A laparotomy was performed on 14 Sprague-Dawley rats; 45 minutes of occlusive ischemia to the left lateral lobe was followed by 5 hours of reperfusion. The rat was injected with I125-labeled ICAM-1 MAb and I131-labeled nonbinding MAb (to control for nonspecific accumulation of ICAM-1 MAb). Entire organs were harvested and accumulated activity was measured in each organ. ICAM-1 levels were expressed as percent injected dose per gram of tissue. Control animals underwent sham laparotomy. RESULTS: ICAM-1 was upregulated in the ischemic lobe of the liver, nonischemic lobe of the liver, heart, kidney, intestine, and pancreas. Up-regulation in the lung was not significant. Both the lung and liver had high constitutive levels of ICAM-1. CONCLUSIONS: These data show that (1) significant hepatic upregulation of ICAM-1 after hepatic ischemia/reperfusion and (2) significant ICAM-1 upregulation in other tissues (heart, kidney, and intestine) after hepatic ischemia/reperfusion. The ICAM-1 upregulation in distant organs is likely mediated by cytokines such as tumor necrosis factor (TNF). These data show that leukocyte endothelial cell interactions in distant organs may be mediated by hepatic ischemia/reperfusion. This is a possible explanation for how failure of one organ can lead to failure of others in multiple organ system failure.  相似文献   

12.
BACKGROUND: Neutrophils may play an important role in the development of liver ischemia/reperfusion injury. We investigated the effects of the immunosuppressants azathioprine (AZA), cyclosporine A (CsA), tacrolimus (FK506), and rapamycin (RPM) on the expression of cytokine-induced neutrophil chemoattractant (CINC) after ischemia/reperfusion of the liver. METHODS: Liver ischemia was induced in male Wistar rats by occluding the portal vein with a microvascular clip for 30 minutes. Rats received two intramuscular injections of AZA (4 mg/kg), CsA (5 mg/kg), FK506 (0.5 mg/kg), or RPM (0.5 mg/kg) 3 and 24 hours before ischemia/reperfusion of the liver. RESULTS: Serum CINC concentrations in untreated animals increased, peaked 6 hours after reperfusion, and thereafter decreased gradually. Pretreatment with AZA, CsA, FK506, and RPM, however, inhibited the increase in serum CINC concentrations after reperfusion. CINC mRNA in liver tissue increased and peaked 3 hours after reperfusion, but was significantly lower in animals treated with AZA, CsA, FK506, and RPM. In vitro CINC production by Kupffer cells harvested from animals treated with AZA, CsA, FK506, or RPM 3 hours after reperfusion was also significantly lower than that observed in untreated animals. Both myeloperoxidase activity and the number of neutrophils accumulating in the liver 24 hours after reperfusion in animals treated with AZA, CsA, FK506, and RPM were significantly lower than in untreated animals. This correlated with lower serum aspartate transaminase, alanine transaminase, and lactate dehydrogenase levels in animals treated with AZA, CsA, FK506, and RPM 24 hours after reperfusion. CONCLUSION: The immunosuppressants AZA, CsA, FK506, and RPM reduce neutrophil accumulation and attenuate ischemia/reperfusion injury of the liver.  相似文献   

13.
OBJECTIVE: To determine the safest method of hepatic vascular clamping associated with the least ischemia-reperfusion injury of the liver during liver surgery. SETTING: University laboratories. SUBJECTS: Sixty-five adult male Wistar rats. METHODS: The hilar area of the left lateral and median lobes of rat liver was clamped for 10 minutes (group 1), 15 minutes (group 2), or 20 minutes (group 3) followed by 5 minutes of reperfusion. The procedure was repeated for a total period of ischemia of 60 minutes in each group. Control rats underwent laparotomy without vascular clamping. In addition to histological examination, we determined calpain mu activity, a marker of liver injury, by Western blotting using specific antibodies against the intermediate (activated) and proactivated forms of calpain mu. Measurements were performed at the end of ischemia and after 2 hours of reperfusion. We also determined the degradation of talin, an intracellular substrate of calpain mu, by Western blotting. RESULTS: The level of adenosine triphosphate and energy charge at 2 hours after reperfusion did not change after ischemia-reperfusion irrespective of the duration of ischemic cycle. After 60 minutes of intermittent ischemia followed by 2 hours of reperfusion, cell membrane bleb formation, calpain mu activation, and talin degradation were detected in groups 2 and 3 but not in group 1. CONCLUSION: The safest method of hepatic vascular clamping that produces a minimum or no ischemia-reperfusion injury is 60 minutes of 6 cycles of 10-minute vascular clamping interrupted by 5 minutes of reperfusion.  相似文献   

14.
Xanthine dehydrogenase (XDH) and xanthine oxidase (XO) are enzymes involved in the metabolism of purines in various organisms. XO produces superoxide radicals, suggesting that is responsible for tissue ischemia-reperfusion injury. To test this notion further studies were performed on rat kidneys and the time course of changes in purine nucleotides, oxypurines and XDH and XO activity was determined. At 24 hours after reperfusion subsequent to 30-minute ischemia, serum creatinine increased to 0.83 +/- 0.74 mg/dl from 0.28 +/- 0.06 mg/dl (the level prior to ischemia, the control). Renal ATP and ADP contents were reduced after ischemia lasting for 30 minutes and restored 10 minutes after reperfusion following 30 minutes of ischemia. The renal AMP content increased after 30 minutes of ischemia and recovered within 10 minutes after reperfusion. The total adenine nucleotide (TAN) content was reduced gradually during ischemia-reperfusion in the rat kidney. Although the energy charge was reduced following 30 minutes of ischemia, it was restored to the control level 10 minutes following reperfusion. Hypoxanthine (HX) and xanthine (X), which had accumulated at 30 minutes after ischemia, were reduced to the control levels 10 minutes after reperfusion. There were no significant changes in the pre-ischemia values of total XDH and XO activities or XDH/XO ratio during the period nor at various time intervals (up to 24 hours) during reperfusion. It was shown that HX and X accumulate without significant conversion of XDH to XO during ischemia. Therefore the putative role of XO in ischemia-reperfusion injury seems to more complex than initially predicted.  相似文献   

15.
Hyaluronan (HA) is a nonsulfated glycosaminoglycan that accumulates in the renal interstitium in immune-mediated kidney diseases. The functional significance of such HA deposition in the kidney has not been elucidated. Several studies have suggested that HA may exhibit proinflammatory effects. Since chemokines such as monocyte chemoattractant protein-1 (MCP-1) play an important role in the recruitment of leukocytes in renal injury, this study tested whether HA and its fragments could promote MCP-1 production by renal parenchymal cells. Mouse cortical tubular cells were stimulated with fragmented HA or with high molecular weight HA (Healon) in vitro and were examined for MCP-1 expression. Fragmented HA, but not Healon, increased MCP-1 mRNA within 30 min with a peak after 2 h. In addition, a 10-fold increase of MCP-1 protein in the supernatant was found after a 6-h stimulation with fragmented HA. The enhanced MCP-1 mRNA and protein expression in response to HA was dose-dependent between 1 and 100 microg/ml. Upregulation of MCP-1 protein production could be blocked by preincubation with actinomycin D or cycloheximide, suggesting that MCP-1 mRNA and protein expression in response to HA are based on de novo synthesis. The HA-stimulated MCP-1 production was also inhibited with anti-CD44 antibodies, suggesting that MCP-1 is upregulated at least in part by signaling through CD44. In summary, fragmented HA markedly stimulates renal tubular MCP-1 production by mechanisms that involve binding to the HA receptor CD44. It is hypothesized that the accumulation of HA in immune renal injury could participate in the recruitment and activation of inflammatory cells in vivo through production of MCP-1.  相似文献   

16.
BACKGROUND: Plaque erosion is a frequent finding in sudden death due to coronary thrombosis. The present study sought to investigate whether monocyte adhesion to human aortic vascular smooth muscle cells (VSMCs) induces procoagulant activity (PCA) and whether this could be mediated by intercellular adhesion molecule-1 (ICAM-1). METHODS AND RESULTS: We incubated mononuclear cells (MNCs) with VSMCs and ICAM-1-transfected Chinese hamster ovary (CHO) cells, investigated monocyte tissue factor (TF) mRNA expression by Northern blot analysis and TF protein expression by ELISA, and measured PCA. Incubation of MNCs with VSMCs for 6 hours increased PCA from 0.7+/-0.1 to 166.0+/-37.9 mU/105 cells (P=0.007), which could be inhibited in a dose-dependent manner by the addition of blocking anti-ICAM-1 monoclonal antibodies. Prestimulation of VSMCs with interleukin-1beta enhanced surface ICAM-1 expression significantly but did not induce PCA in VSMCs. Incubation of MNCs with prestimulated VSMCs led to a further increase in PCA to 239.9+/-27.9 mU/10(5) cells (P=0.02 compared with incubation with unstimulated VSMCs). Incubation of MNCs with VSMCs enhanced TF mRNA after 2 hours and significantly increased TF protein content after 6 hours. Incubation of purified monocytes with ICAM-1-transfected CHO cells increased PCA from 1.2+/-0.2 to 81.9+/-3.3 mU/10(5) cells (P<0.001 compared with incubation with untransfected CHO cells) after 6 hours. This effect could be inhibited significantly by the addition of blocking anti-CD18, anti-CD11b, or anti-CD11c monoclonal antibodies. Similar results were obtained for MNCs. CONCLUSIONS: Monocyte adhesion to VSMCs induces TF mRNA and protein expression and monocyte PCA, which is regulated by beta2-integrin-mediated monocyte adhesion to ICAM-1 on VSMCs.  相似文献   

17.
18.
19.
50 eyes of 30 Sprague-Dawley rats were subjected to 60 minutes of pressure-induced ischemia, then fixed for light and electron microscopy with no reperfusion, or reperfusion after 30 minutes, 1, 2 or 4 hours, and 1 or 3 days from the time ocular ischemia was relaxed. The TdT-mediated dUTP-biotin nick end labeling (TUNEL) method revealed apoptotic signs at the inner retina as early as 1 hour after reperfusion. However, the incidence of apoptotic signs with the TUNEL method did not accord with the results of electron microscopic examination. During the time after the reperfusion started, especially after more than 4 hours, apoptotic signs became obvious and extended from the inner to the outer retina. These apoptotic findings could be seen with both the TUNEL method and electron microscopy. By 3 days after the reperfusion, necrotic cells in the ganglion cell layer, and the inner and outer nuclear layer became more prominent than apoptotic cells. These results may provide a baseline for therapeutic strategy and the prognosis of ischemia-reperfusion injury in the retina.  相似文献   

20.
During the first few hours after heart transplantation, the occurrence of graft failure is unpredictable and devastating. An explosive cascade of inflammatory events within the reperfused graft vasculature is likely to be mediated, at least in part, by the local expression of the leukocyte adhesion receptor intercellular adhesion molecule-1 (ICAM-1, CD54). Furthermore, although proinflammatory cytokines such as interleukin-1 (IL-1) are known to autoinduce their own (and ICAM-1) expression in vitro, there are no data to identify their functional in vivo cross talk in the setting of isograft transplantation. To determine the role of ICAM-1 in primary graft failure, we used an isogeneic vascularized model of heterotopic cardiac transplantation. ICAM-1 mRNA and protein increased in grafts during the early posttransplant period and were predominantly localized in the endothelium. The functional significance of this was established using donor hearts obtained from either ICAM-1-deficient (ICAM-1 -/-) or control (ICAM-1 +/+) mice. ICAM-1 +/+ grafts exhibited increased neutrophil infiltration, reduced left ventricular compliance, and poorer survival than did ICAM-1 -/- grafts. Increased ICAM-1 expression was not limited to ICAM-1 +/+ grafts but also occurred in unmanipulated recipient organs located remote from the site of surgery (but only after transplantation of ICAM-1 +/+, not ICAM-1 -/-, cardiac grafts). This expression of ICAM-1 in remote organs appeared to be triggered by IL-1alpha released from the graft, because (1) in situ hybridization revealed increased IL-1 mRNA within cells of the reperfused graft, including myocytes and endothelial cells; (2) ICAM-1 expression in remote organs coincided with a significant increase in serum levels of IL-1alpha after transplantation of ICAM-1 +/+ grafts; both remote organ ICAM-1 expression and IL-1alpha levels were blunted by implantation of ICAM-1 -/- grafts; and (3) remote organ ICAM-1 expression and neutrophil infiltration and IL-1 levels could be blocked by the administration of an IL-1 receptor antagonist. These data demonstrate an apparent positive-feedback loop in which local ICAM-1 and IL-1 expression leads to a mutual amplification of each other's expression within the reperfused graft, promulgating inflammatory events that are likely to be an important cause of primary cardiac graft failure. Because IL-1 receptor blockade reduces the IL-1-mediated autoinduction of IL-1, reduces the expression of ICAM-1 in both the graft and remote organs, and improves graft survival, it may provide a new and effective strategy to prevent the occurrence of primary cardiac graft failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号