首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The FliG, FliM, and FliN proteins of the bacterial flagellar motor are believed to interact with one another to form the switch complex, which in turn is thought to interact with one of the chemotaxis proteins, CheY. In particular, FliM appears to be an intermediary between CheY and FliG: the current model suggests that CheY, when phosphorylated (CheY-P), binds to FliM and produces a conformational change in FliM that is propagated to FliG. The result of these interactions is to induce clockwise rotation of the flagellar motors and tumbling of the cell. Various genetic and biochemical studies have provided evidence that the switch proteins associate with each other and that CheY-P binds to FliM. Here, we have used affinity blotting to obtain direct evidence of interaction between Salmonella typhimurium FliM and FliN, FliM and FliG, and FliM and CheY-P. We have also examined the ability of various FliM deletion and truncation mutant proteins to bind to FliN, FliG, and CheY-P. From these data, we conclude that distinct regions of the FliM protein bind to each of these other proteins. We propose a model in which the N-terminal region of FliM binds to CheY-P, the middle region of FliM binds to FliG, and the C-terminal region binds to FliN.  相似文献   

3.
MotA and MotB are cytoplasmic membrane proteins that form the force-generating unit of the flagellar motor in Salmonella typhimurium and many other bacteria. Many missense mutations in both proteins are known to cause slow motor rotation (slow-motile phenotype) or no rotation at all (non-motile or paralysed phenotype). However, large stretches of sequence in the cytoplasmic regions of MotA and in the periplasmic region of MotB have failed to yield these types of mutations. In this study, we have investigated the effect of a series of 10-amino-acid deletions in these phenotypically silent regions. In the case of MotA, we found that only the C-terminal 5 amino acids were completely dispensable; an adjacent 10 amino acids were partially dispensable. In the cytoplasmic loop region of MotA, deletions made the protein unstable. For MotB, we found that two large segments of the periplasmic region were dispensable: the results with individual deletions showed that the first consisted of six deletions between the sole transmembrane span and the peptidoglycan binding motif, whereas the second consisted of four deletions at the C-terminus. We also found that deletions in the MotB cytoplasmic region at the N-terminus impaired motility but did not abolish it. Further investigations in MotB were carried out by combining dispensable deletion segments. The most extreme version of MotB that still retained some degree of function lacked a total of 99 amino acids in the periplasmic region, beginning immediately after the transmembrane span. These results indicate that the deleted regions in the MotA cytoplasmic loop region are essential for stability; they may or may not be directly involved in torque generation. Part of the MotA C-terminal cytoplasmic region is not essential for torque generation. MotB can be divided into three regions: an N-terminal region of about 30 amino acids in the cytoplasm, a transmembrane span and about 260 amino acids in the periplasm, including a peptidoglycan binding motif. In the periplasmic region, we suggest that the first of the two dispensable stretches in MotB may comprise part of a linker between the transmembrane span of MotB and its attachment point to the peptidoglycan layer, and that the length or specific sequence of much of that linker sequence is not critical. About 40 residues at the C-terminus are also unimportant.  相似文献   

4.
Bacterial flagellar motors rotate, obtaining power from the membrane gradient of protons or, in some species, sodium ions. Torque generation in the flagellar motor must involve interactions between components of the rotor and components of the stator. Sites of interaction between the rotor and stator have not been identified. Mutational studies of the rotor protein FliG and the stator protein MotA showed that both proteins contain charged residues essential for motor rotation. This suggests that functionally important electrostatic interactions might occur between the rotor and stator. To test this proposal, we examined double mutants with charged-residue substitutions in both the rotor protein FliG and the stator protein MotA. Several combinations of FliG mutations with MotA mutations exhibited strong synergism, whereas others showed strong suppression, in a pattern that indicates that the functionally important charged residues of FliG interact with those of MotA. These results identify a functionally important site of interaction between the rotor and stator and suggest a hypothesis for electrostatic interactions at the rotor-stator interface.  相似文献   

5.
CheY is a response regulator protein of Escherichia coli that interacts with the flagellar motor-switch complex to modulate flagellar rotation during chemotaxis. The switch complex is composed of three proteins, FliG, FliM, and FliN. Recent biochemical data suggest a direct interaction of CheY with FliM. In order to determine the FliM binding face of CheY, we isolated dominant suppressors of fliM mutations in cheY with limited allele specificity. The protein products of suppressor cheY alleles were purified and assayed for FliM binding. Six out of nine CheY mutants were defective in FliM binding. Suppressor amino acid substitutions were mapped on the crystal structure of CheY showing clustering of reduced binding mutations on a solvent-accessible face of CheY, thus revealing a FliM binding face of CheY. To examine the basis of genetic suppression, we cloned, purified, and tested FliM mutants for CheY binding. Like the wild-type FliM, the mutants were also defective in binding to various CheY suppressor mutants. This was not expected if CheY suppressors were compensatory conformational suppressors. Furthermore, a comparison of flagellar rotation patterns indicated that the cheY suppressors had readjusted the clockwise bias of the fliM strains. However, a chemotaxis assay revealed that the readjustment of the clockwise bias was not sufficient to make cells chemotactic. Although the suppressors did not restore chemotaxis, they did increase swarming on motility plates by a process called "pseudotaxis." Therefore, our genetic selection scheme generated suppressors of pseudotaxis or switch bias adjustment. The binding results suggest that the mechanism for this adjustment is the reduction in binding affinity of activated CheY. Therefore, these suppressors identified the switch-binding surface of CheY by loss-of-function defects rather than gain-of-function compensatory conformational changes.  相似文献   

6.
A key event in signal transduction during chemotaxis of Salmonella typhimurium and related bacterial species is the interaction between the phosphorylated form of the response regulator CheY (CheY approximately P) and the switch of the flagellar motor, located at its base. The consequence of this interaction is a shift in the direction of flagellar rotation from the default, counterclockwise, to clockwise. The docking site of CheY approximately P at the switch is the protein FliM. The purpose of this study was to identify the CheY-binding domain of FliM. We cloned 17 fliM mutants, each defective in switching and having a point mutation at a different location, and then overexpressed and purified their products. The CheY-binding ability of each of the FliM mutant proteins was determined by chemical crosslinking. All the mutant proteins with an amino acid substitution at the N terminus, FliM6LI, FliM7SY and FliM10EG, bound CheY approximately P to a much lesser extent than did wild-type FliM. CheY approximately P-binding of the other mutant proteins was similar to wild-type FliM. To investigate whether the FliM domain that includes these three mutations is indeed the CheY-binding domain, we synthesized a peptide composed of the first 16 amino acid residues of FliM, including a highly conserved region of FliM (residues 6 to 15). The peptide bound CheY and, to a larger extent, CheY approximately P. It also competed with full-length FliM on CheY approximately P. These results indicate that the CheY-binding domain of FliM is located at the N terminus, within residues 1 to 16, and suggest that FliM monomers can form a complete site for CheY binding.  相似文献   

7.
CheY is a signal transduction protein of the bacterial chemotaxis system that acts as a molecular switch to alter the swimming behavior of the bacterium. When CheY becomes phosphorylated at Asp57, CheY-Pi interacts with flagellar motor proteins, including FliM, to increase the likelihood that the flagellar motor will change its sense of rotation, increasing the frequency of tumbling. The structure of CheY in its dephosphorylated (inactive) state has been intensively investigated. The short lifetime ( approximately 20 s) of the aspartyl phosphate has precluded the complete structural determination of CheY-Pi. We have synthesized an analogue of CheY-Pi by alkylating an aspartate-to-cysteine mutant at position 57 of CheY to add a phosphonomethyl group at Cys57. This analogue, phosphono-CheY, is stable for months. Phosphono-CheY binds to two of the targets of CheY-Pi, FliM and CheZ, in a manner similar to that of CheY-Pi and much better than either unphosphorylated CheY or the unmodified form of D57C CheY. Phosphono-CheY also binds Mg(II) with a dissociation constant of approximately 6 mM at neutral pH and moderate salt level. These observations indicate that phosphono-CheY is a good biochemical analogue of CheY-Pi.  相似文献   

8.
A cell of the bacterium Escherichia coli was tethered covalently to a glass coverslip by a single flagellum, and its rotation was stopped by using optical tweezers. The tweezers acted directly on the cell body or indirectly, via a trapped polystyrene bead. The torque generated by the flagellar motor was determined by measuring the displacement of the laser beam on a quadrant photodiode. The coverslip was mounted on a computer-controlled piezo-electric stage that moved the tether point in a circle around the center of the trap so that the speed of rotation of the motor could be varied. The motor generated approximately 4500 pN nm of torque at all angles, regardless of whether it was stalled, allowed to rotate very slowly forwards, or driven very slowly backwards. This argues against models of motor function in which rotation is tightly coupled to proton transit and back-transport of protons is severely limited.  相似文献   

9.
Three transmembrane glutamic acid residues play essential roles in the metal-tetracycline/H+ antiporter Tet(K) of Staphylococcus aureus [Fujihira et al., FEBS Lett. 391 (1996) 243-246]. In the putative hydrophilic loop region of the Tet(K) and Tet(L) proteins, six acidic residues are conserved. Asp74, Asp200, Asp318 and Glu381 are located on the putative cytoplasmic side, and Asp39 and Glu345 on the putative periplasmic side. These residues were replaced by a neutral amino acid residue or a charge-conserved one. In contrast to the transmembrane glutamic acid residues, the replacement of the two glutamic acid residues (Glu345 and Glu381) did not affect the tetracycline resistance level. Out of the other four aspartic acid residues, the only essential residue is Asp318, any replacement of which resulted in complete loss of the tetracycline resistance and transport activity. Asp318 is located in cytoplasmic loop 10-11 in the putative 14-transmembrane-segment topology of Tet(K). In the case of the tetracycline exporters of Gram-negative bacteria, the only essential acidic residue in the cytoplasmic loop region is located in loop 2-3 [Yamaguchi et al., Biochemistry 31 (1992) 8344-8348]. It may be a general role for tetracycline efflux proteins that three transmembrane and one cytoplasmic acidic residues are mandatory for the tetracycline transport function.  相似文献   

10.
P-glycoprotein (Pgp), the product of the MDR1 gene, confers multidrug resistance on cancer cells by ATP-dependent extrusion of anticancer drugs. Biochemical and genetic studies with Pgp have identified the putative transmembrane (TM) region 12 (residues 974-994) as a major region involved in drug interactions with amino acid residues conserved among Pgp family members shown to be essential for transport. To determine whether nonconserved residues might be involved in substrate specificity, seven amino acid residues were identified within TM 12 that were not strictly conserved among the MDR1 and MDR2 family of proteins from different mammalian species. We replaced all seven of these amino acid residues with alanine, one at a time and in combinations, and used a vaccinia virus based transient expression system to analyze function. None of the single replacements caused any alteration in transport function. However, when residues L975, V981, and F983 were replaced collectively, drug transport, drug-stimulated ATP hydrolysis, and photoaffinity labeling with the drug analogue, [125I]iodoarylazidoprazosin (IAAP), were abrogated, with little effect on [alpha-32P]-8-azido-ATP labeling and basal ATPase activity. Pairwise alanine substitutuions showed variable effects on function. Substitutions including L975A in combination with any one of the other two replacements had the least effect on Pgp function. The V981A and F983A double mutant showed the most effect on transport of fluorescent substrates. In contrast, alanine substitutions of all four nonconserved residues M986, V988, Q990, and V991 at the putative carboxy-terminal half of TM 12 showed no effect on drug transport except for a partial reduction in bodipy-verapamil extrusion. These results suggest that nonconserved residues in the putative amino-proximal half of TM 12 of Pgp play a more direct role in determining specificity of drug transport function than those in the putative carboxy-terminal half of TM 12.  相似文献   

11.
CheY serves as a structural prototype for the response regulator proteins of two-component regulatory systems. Functional roles have previously been defined for four of the five highly conserved residues that form the response regulator active site, the exception being the hydroxy amino acid which corresponds to Thr87 in CheY. To investigate the contribution of Thr87 to signaling, we characterized, genetically and biochemically, several cheY mutants with amino acid substitutions at this position. The hydroxyl group appears to be necessary for effective chemotaxis, as a Thr-->Ser substitution was the only one of six tested which retained a Che+ swarm phenotype. Although nonchemotactic, cheY mutants with amino acid substitutions T87A and T87C could generate clockwise flagellar rotation either in the absence of CheZ, a protein that stimulates dephosphorylation of CheY, or when paired with a second site-activating mutation, Asp13-->Lys, demonstrating that a hydroxy amino acid at position 87 is not essential for activation of the flagellar switch. All purified mutant proteins examined phosphorylated efficiently from the CheA kinase in vitro but were impaired in autodephosphorylation. Thus, the mutant CheY proteins are phosphorylated to a greater degree than wild-type CheY yet support less clockwise flagellar rotation. The data imply that Thr87 is important for generating and/or stabilizing the phosphorylation-induced conformational change in CheY. Furthermore, the various position 87 substitutions differentially affected several properties of the mutant proteins. The chemotaxis and autodephosphorylation defects were tightly linked, suggesting common structural elements, whereas the effects on self-catalyzed and CheZ-mediated dephosphorylation of CheY were uncorrelated, suggesting different structural requirements for the two dephosphorylation reactions.  相似文献   

12.
The Tol-Pal proteins of Escherichia coli are involved in maintaining outer membrane integrity. They form two complexes in the cell envelope. Transmembrane domains of TolQ, TolR, and TolA interact in the cytoplasmic membrane, while TolB and Pal form a complex near the outer membrane. The N-terminal transmembrane domain of TolA anchors the protein to the cytoplasmic membrane and interacts with TolQ and TolR. Extensive mutagenesis of the N-terminal part of TolA was carried out to characterize the residues involved in such processes. Mutations affecting the function of TolA resulted in a lack or an alteration in TolA-TolQ or TolR-TolA interactions but did not affect the formation of TolQ-TolR complexes. Our results confirmed the importance of residues serine 18 and histidine 22, which are part of an SHLS motif highly conserved in the TolA and the related TonB proteins from different organisms. Genetic suppression experiments were performed to restore the functional activity of some tolA mutants. The suppressor mutations all affected the first transmembrane helix of TolQ. These results confirmed the essential role of the transmembrane domain of TolA in triggering interactions with TolQ and TolR.  相似文献   

13.
Motile but generally nonchemotatic (che) mutants of Escherichia coli were isolated by a simple screening method. A total of 172 independent mutants were examined, and four genes were defined on the basis of mapping and complemenvestigated by determining their null phenotypes with nonsense or bacteriophage Mu-induced mutations. The cheA and cheB products were essential in producing changes of swimming direction and flagellar rotation. The checC product appeared to be an essential component of the flagellum; however, specific mutational alterations of this component allowed flagellar assembly but prevented directional changes in swimming. Since some cheB mutants changed directions incessantly, this gene product may also serve to control the direction of flagellar rotation in response to chemoreceptor signals. Thus most or all of the common elements in the signalling process were involved in the generation and regulation of changes in the direction of flagellar rotation.  相似文献   

14.
InvA, which is essential for Salmonella spp. to enter cultured epithelial cells, is a member of a family of proteins involved in either flagellar biosynthesis or the secretion of virulence determinants by a number of plant and mammalian pathogens. The predicted overall secondary structures of these proteins show significant similarities and indicate a modular construction with a hydrophobic amino-terminal half, consisting of six to eight potential transmembrane domains, and a hydrophilic carboxy terminus which is predicted to reside in the cytoplasm. These proteins can be aligned over the entire length of their polypeptide sequences, with the highest degree of homology found in the amino terminus and clusters of conserved residues in the carboxy terminus. We examined the functional conservation among members of this protein family by assessing the ability of MxiA of Shigella flexneri and LcrD of Yersinia pseudotuberculosis to restore invasiveness to an invA mutant of Salmonella typhimurium. We found that MxiA was able to complement the entry defect of the invA mutant strain of S. typhimurium. In contrast, LcrD failed to complement the same strain. However, a plasmid carrying a gene encoding a chimeric protein consisting of the amino terminus of LcrD and the carboxy terminus of InvA complemented the defect of the Salmonella invA mutant. These results indicate that the secretory systems in which these proteins participate are functionally similar and that the Salmonella and Shigella systems are very closely related. These data also suggest that determinants of specificity may be located at the carboxy termini of these proteins.  相似文献   

15.
Impressive progress has been made in understanding the mechanism of bacterial chemotaxis and function of the flagellar motor, but how the direction of rotation is reversed by the 'flagellar switch'--a central step in chemotaxis--remains obscure and calls for new experimental approaches.  相似文献   

16.
Small, acid-soluble spore proteins (SASP) of the alpha/beta-type from several Bacillus species were cross-linked into homodimers, heterodimers and homooligomers with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) in the presence of linear plasmid DNA. Significant protein cross-linking was not detected in the absence of DNA. In all four alpha/beta-type SASP examined, the amino donor in the EDC induced amide cross-links was the alpha-amino group of the protein. However, the carboxylate containing amino acid residues involved in cross-linking varied. In SASP-A and SASP-C of Bacillus megaterium two conserved glutamate residues, which form part of the germination protease recognition sequence, were involved in cross-link formation. In SspC from Bacillus subtilis and Bce1 from Bacillus cereus the acidic residues involved in cross-link formation were not in the protease recognition sequence, but at a site closer to the N terminus of the proteins. These data indicate that, although there are likely to be subtle structural differences between different alpha/beta-type SASP, the N-terminal regions of these proteins are involved in protein-protein interactions while in the DNA bound state.  相似文献   

17.
18.
19.
Escherichia coli strains overproducing the response regulator CheY respond to acetate by increasing their clockwise bias of flagellar rotation, even when they lack other chemotaxis proteins. With acetate metabolism mutants, we demonstrate that both acetate kinase and acetyl coenzyme A synthetase are involved in this response. Thus, a response was observed when one of these enzymes was missing but not when both were absent.  相似文献   

20.
Several enzymes, including cytoplasmic and flagellar outer arm dynein, share an Mr 8,000 light chain termed LC8. The function of this chain is unknown, but it is highly conserved between a wide variety of organisms. We have identified deletion alleles of the gene (fla14) encoding this protein in Chlamydomonas reinhardtii. These mutants have short, immotile flagella with deficiencies in radial spokes, in the inner and outer arms, and in the beak-like projections in the B tubule of the outer doublet microtubules. Most dramatically, the space between the doublet microtubules and the flagellar membrane contains an unusually high number of rafts, the particles translocated by intraflagellar transport (IFT) (Kozminski, K.G., P.L. Beech, and J.L. Rosenbaum. 1995. J. Cell Biol. 131:1517-1527). IFT is a rapid bidirectional movement of rafts under the flagellar membrane along axonemal microtubules. Anterograde IFT is dependent on a kinesin whereas the motor for retrograde IFT is unknown. Anterograde IFT is normal in the LC8 mutants but retrograde IFT is absent; this undoubtedly accounts for the accumulation of rafts in the flagellum. This is the first mutation shown to specifically affect retrograde IFT; the fact that LC8 loss affects retrograde IFT strongly suggests that cytoplasmic dynein is the motor that drives this process. Concomitant with the accumulation of rafts, LC8 mutants accumulate proteins that are components of the 15-16S IFT complexes (Cole, D.G., D.R. Deiner, A.L. Himelblau, P.L. Beech, J.C. Fuster, and J.L. Rosenbaum. 1998. J. Cell Biol. 141:993-1008), confirming that these complexes are subunits of the rafts. Polystyrene microbeads are still translocated on the surface of the flagella of LC8 mutants, indicating that the motor for flagellar surface motility is different than the motor for retrograde IFT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号