首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
内沟槽环件辗压成形工艺模拟研究   总被引:1,自引:1,他引:0  
针对异形截面环件壁薄、断面形状较复杂的特点,可用辗压工艺成形内沟槽环件。利用有限元数值模拟技术,研究了辗压过程中金属变形流动特点、成形规律等,并分析了轧制孔型、摩擦因数、进给速度对成形效果的影响。结果表明:采用辗压成形内沟槽环件,工艺过程简单;轧制孔型、摩擦因数对成形效果影响较大。  相似文献   

2.
基于弹塑性变形理论,通过虚功率原理建立环件冷轧过程有限元方程,并采用对时间的中心差分格式进行求解。在进行弹塑性应力分析时,本文引入径向回映算法,并分别给出了弹塑性加载和弹性回复时的应力计算列式。开发了环件冷轧有限元模拟软件NHRing,并对矩形截面环件开式冷轧过程进行了分析计算。计算结果表明,随着轧制的进行,环件中的应变分布趋于均匀,而环件截面中心部位由于锻不透将导致端面产生“鱼尾”现象,这与实际环轧生产基本一致。  相似文献   

3.
基于有限元模拟软件Deform-3D和三维造型软件建立有限元模型进行模拟。选取不同的驱动辊转速(1.75 rad/s、2.25 rad/s、2.75 rad/s、3.25 rad/s)针对模拟结果考虑不同的驱动辊转速对环坯温度场、等效应变、环件表面微观组织以及成形性能的影响。综合分析得出环坯轧制过程中驱动辊的最佳转速为1.75 rad/s,并进行了实际生产验证,验证结果与模拟结果吻合。  相似文献   

4.
面对环件辗轧成形过程有限元计算效率极低和成形成性难以一体化调控的挑战,提出了环件辗轧智能建模仿真优化的新思路和新方法。该方法能在有限元计算过程中,实现各轧辊运动的实时协调匹配和基于目标驱动的自动调控,只需要一次有限元计算就可直接获得满足控制量(环件长大速度、轧制力、温度、组织性能等)目标要求的环轧工艺路径;简介了超大型铝合金环件(10 m级)双向辗轧智能建模仿真、超大型筒节环件轧制智能建模仿真、基于力控的大型铝合金环件(5 m级)双向辗轧工艺路径智能仿真优化、基于温控的铸坯环件双向辗轧工艺路径智能仿真优化4个方面的最新研究进展。  相似文献   

5.
用于金属成形进行模拟的有限元方程的求解方法,主要有隐式和显式积分两种方法.对于复杂的三维变形分析,如环件轧制,隐式方法需要很长的运行时间.而利用显式方法,可以达到很好的效果.文中利用Abaqus /Explicit 通用有限元程序对径向环轧进行了模拟.  相似文献   

6.
目的 开式筒壳液压成形采用具有搭接结构的开式筒壳作为坯料,具有提高成形能力、改善壁厚分布、降低成形压力等优势。旨在以矩形截面件为对象,研究内压作用下开式筒壳的圆角充填行为。方法 采用数值模拟手段,分析了矩形截面件开式液压成形过程中的应力应变变化及成形缺陷。利用内高压成形机和自主研制的自密封装置,开展了搭接区中点分别位于圆角区、过渡区和直边区3种搭接位置条件下的矩形截面件开式液压成形实验研究。结果 模拟和实验结果表明,开式筒壳搭接区的外层为易起皱区。当搭接量为80 mm且搭接区中点位于圆角区时,模具型腔的外压作用有效抑制了起皱的形成。4个圆角中距离对应搭接位置最近的圆角最先完成充填。搭接区域所在位置的壁厚减薄率显著低于其他区域,3种条件下成形件中间截面的最大减薄率分别为10.4%、9.8%和10.2%,搭接区中点位于过渡区时最大减薄率较低。结论 采用一定搭接量的开式筒壳比封闭截面管坯更有利于圆角的充填。选取适宜的搭接位置可避免成形过程中起皱缺陷的产生。此外,搭接位置对开式筒壳圆角充填的应力应变分布、圆角半径以及壁厚分布起到重要作用。  相似文献   

7.
钛合金锥形件温热剪旋热力耦合有限元模拟   总被引:6,自引:0,他引:6  
成形过程中的温度场变化对钛合金锥形件温热剪旋成功与否,以及产品的精度影响很大.在数值模拟时叠加符合实际的热源边界条件显得非常重要.针对TC4钛合金锥形件建立了三维热力耦合有限元模型,在有限元模拟过程中叠加了火焰加热边界条件.计算了成形过程中工件和芯轴上温度场的分布情况.所建立的有限元模型更加符合实际工况,模拟结果更加真实可靠.  相似文献   

8.
阐明了环件轧制和摆动辗压两种精密成形技术原理和工艺特点.基于成形原理和工艺要求,介绍了轴承环件精密冷轧成形、高压开关环件精密热轧成形、齿轮和凸轮精密冷摆辗成形等典型零件精密成形技术生产应用情况.针对环件轧制和摆动辗压精密成形现状,分析了其技术发展趋势和面临课题.  相似文献   

9.
目的 研究不同轧辊尺寸对40Cr/Q345双金属复合环件热辗扩成形过程的影响规律,并分析环件在辗扩变形过程中内、外层区域的协调变形机理,使辗扩完成后的双金属环件整体变形和温度分布趋于均匀。方法 基于ABAQUS有限元模拟软件,使用动态显式算法,建立双金属环件径-轴向轧制三维热-力耦合有限元模型,采用直径为70、90、110、130、150、170 mm的芯辊尺寸和直径为400、500、600、700、800 mm的驱动辊尺寸,分别研究两个主要的成形辊尺寸对双金属环件热辗扩成形过程的影响。结果 在研究的轧辊尺寸范围内,随着芯辊直径的减小,双金属环件整体温度分布趋于均匀,其变形均匀性明显提高,其中,环件外层40Cr金属塑性变形明显降低,内层Q345金属塑性变形显著升高;随着驱动辊直径的增大,环件整体温度分布均匀性有所降低,变形均匀性略有提高。结论 在双金属环件热辗扩成形过程中,较小的芯辊尺寸能够提高环件整体的温度分布均匀性,并能有效提高内层Q345金属的塑性变形程度,使环件整体变形更加均匀。较大的驱动辊尺寸会略微降低环件的温度分布均匀性,并通过改变内、外层金属的塑性变形程度使环件整体变形趋...  相似文献   

10.
铝合金双层杯件冷挤压成形工艺模拟研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对铝合金双层杯件的结构特点,提出了闭式冷挤压成形工艺方案,并研究了不同坯料形状对成形过程的影响.采用有限元模拟软件对双层杯件成形过程进行了数值模拟,比较分析了不同坯料对变形过程中的金属流动、应变以及载荷曲线等的影响,预测了该双层杯件成形过程中的缺陷及产生原因,得出了最优成形工艺方案,可获得高质量、高精度的锻件,实现近...  相似文献   

11.
目的 为满足某型号燃气轮机用2 m级大尺寸高温合金机匣整体精密成形的要求,在保证组织与性能均匀性的同时,进一步提高材料利用率.方法 通过数值模拟优化环件精密成形工艺,对制坯及环轧过程的热力参数进行分析,并将其与组织性能结果进行对比.结果 通过胎膜制坯+异形环轧成形大尺寸高温合金环锻件,锻件成形完整,热力参数分布均匀,显...  相似文献   

12.
目的采用多步辗扩工艺模型虚拟生产异形环件,研究环件多步辗扩过程中环件的成形规律,为实际生产提供工艺参数。方法利用Gleeble-3500D热模拟实验机对Q345E钢进行单道次热压缩实验,建立环件用钢的流变应力模型,在Simufact中建立大型锻坯外凹槽内台阶环件多步辗扩三维数值稳定辗扩模型,对环件辗扩过程进行数值模拟。结果在双件辗扩内台阶环件和外凹槽环件的过程中,在与成形辊的接触部位应变场呈现较大值,环件的温度分布从心部到外逐渐降低,环件的应变与温度分布极为不均匀,辗扩过程需要对芯辊分级降速。结论通过所建立的多步辗扩模型,可以利用矩形锻坯虚拟生产异形环件。  相似文献   

13.
Role of Friction in Cold Ring Rolling   总被引:1,自引:0,他引:1  
1. Introduction Cold ring rolling is a main technology used to manu- facture various precise seamless ring shape parts. It has been increasingly used in many industrial fields such as bearing, machine, automobile, petrochemicals, aeronau- tics, astronautics and atomic energy because of its many technical superiorities such as considerable saving in en- ergy and material cost, high quality, high efficiency, and low noise, etc. To research and develop advanced precise cold ring rolling technolog…  相似文献   

14.
In this work, the forming behaviour of a commercial sheet of AZ31B magnesium alloy at elevated temperatures is investigated and reported. The experimental activity is performed in two phases. The first phase consists in free bulging test and the second one in analysing the ability of the sheet in filling a closed die. Different pressure and temperature levels are applied. In free bulging tests, the specimen dome height is used as characterizing parameter; in the same test, the strain rate sensitivity index is calculated using an analytical approach. Thus, appropriate forming parameters, such as temperature and pressure, are individuated and used for subsequent forming tests. In the second phase, forming tests in closed die with a prismatic shape cavity are performed. The influence of relevant process parameters concerning forming results in terms of cavity filling, fillet radii on the final specimen profile are analysed. Closed die forming tests put in evidence how the examined commercial magnesium sheet can successfully be formed in complicated geometries if process parameters are adequately chosen.  相似文献   

15.
目的 解决合金钢制轮辋滚压成形精度低和圆角减薄难以控制等问题。方法 通过Solidworks建立钢制轮辋三维模型,并对轮辋滚压模型参数进行优化设计,确定材料应力–应变、接触边界条件,且根据节点线速度相等原理计算钢制轮辋滚压成形时间步长。运用有限元软件Simufact Forming分析不同工艺参数对成形厚度的影响,在此基础上,优化滚压成形工艺参数组合,并分析各道次滚压轮辋应力和应变的仿真结果,引入质点追踪技术,分析应力在每个增量步内的变化规律。结果 对比分析仿真与实验测试数据,发现仿真厚度与实际厚度基本吻合,验证了滚压工艺仿真的正确性。结论 增大摩擦因数有利于工件成形,但当摩擦因数增大到0.3后,对成形壁厚影响不明显。随着进给速度的增大,测点厚度增加,此时利于成形,但进给速度过大,侧向力变大,易造成工件偏移。降低转速有利于控制轮辋减薄。在成形过程中,一滚凹槽先产生较大应力,且应变较大;二滚预成形轮缘,该处应力和应变均较大,且最大等效应力出现在轮缘部位;三滚轮辋精确成形,应力分布更加均匀,圆角变形相对较小,轮辋圆角减薄率明显提升。  相似文献   

16.
Recently proposed mathematical model for mold filling processes under centrifugal field conditions and the computer codes were first tested through the sample simulation of gravity mold filling process for a benchmark plate-casting,which were compared with quoted experimental observations.The model and the developed computer program were then applied to the numerical simulation of centrifugal field mold filling processes for a thin-section casting with a titanium alloy melt of assumed viscosity of 1.2 and 12.0mm^2/s,respectively.The computation result comparison shows that the flow behaviors of the filling melts are basically similar to each other although the less viscous melt tends to fill into the thin section casting cavity faster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号