首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
采用Gleeble-3800型热模拟试验机和单道次压缩试验对ML40Cr冷镦钢金属塑性变形抗力进行了研究。结果表明:在一定的变形程度下,塑性变形的ML40Cr冷镦钢仍存在强化,变形抗力随变形程度的增加而增加,在低应变速率下,温度大于1000℃时发生动态再结晶;变形抗力随着变形速率的增加而增大;多数情况下,变形温度增高,变形抗力降低,只有在两相区低应变速率下出现相反的情况。同时建立了ML40Cr冷镦钢变形抗力数学模型,为冷镦钢低温轧制计算轧制力提供了理论依据。  相似文献   

2.
探讨了热变形条件对经高效熔体综合处理的易拉罐用铝材微观组织的影响规律,结果表明,变形温度较低时,仅发生动态回复,当变形温度高于400℃时,发生了完全的动态再结晶,可获得等轴晶粒,且随着变形温度升高,晶粒将变得粗大;在较低和较高的应变速率条件下,均发生了完全的动态再结晶,晶粒尺寸随着应变速率的降低而变大,但低的应变速率和高的应变速率条件下存在不同的再结晶机理,应变速率在1.0s-1和5.0s-1时,只能获得动态回复组织;变形量较小时,显微组织变化不明显,当变形量增大后,可发生完全动态再结晶,若继续增大变形量,则再结晶组织将再次被拉长。  相似文献   

3.
采用Gleeble-1500型热模拟试验机对AZ61镁合金在变形温度为250~400℃、应变速率为0.001~10s-1的条件下进行热压缩模拟试验,研究了合金的热压缩变形行为和组织演变。结果表明:AZ61合金在热压缩变形过程中的流变行为可用Arrhenius关系曲线来表示,合金的应力指数为5.096,热变形激活能为147.262kJ·mol-1;在相同的变形温度下,合金的再结晶程度随应变速率的增加而增大;在低应变速率(0.001~1s-1)下变形时,再结晶主要发生在初始晶界上,在高应变速率(10s-1)下变形时,再结晶同时在初始晶界和孪晶上发生;在相同的应变速率下,再结晶程度和再结晶晶粒尺寸均随变形温度的升高而增大。  相似文献   

4.
采用Gleeble-3800型热模拟试验机在温度1 173~1 473K、应变速率0.01~10s-1的条件下,对镍微合金化9310钢的高温热变形前行为进行了研究,得到了试验钢的高温流变曲线,并用光学显微镜观察了试验钢变形前后的显微组织。结果表明:镍微合金化9310钢的流变应力和峰值应变随着变形温度的升高和应变速率的降低而减小;试验钢在真应变为0.9,应变速率为0.01~10s-1的条件下,随着应变速率的提高,其发生完全动态再结晶的温度也逐渐升高;测得试验钢的热变形激活能Q值为362.649kJ·mol-1,并建立了其热变形方程以及动态再结晶条件下峰值应变σp与Zener-Hollomon因子的关系式。  相似文献   

5.
利用Gleeble-3500热模拟试验机,研究了高温合金GH4169在温度1 000~1 150℃,应变速率0.01~10 s-1变形参数下的热加工性能及组织演变规律。获得了合金的真应力-真应变曲线,随后构建了Arrhenius本构方程、加工图与热变形机理图。结果表明,增加应变速率或降低变形温度会导致变形抗力增大,其中1 000℃下的变形抗力可达到400 MPa。合金在峰值应变与稳态应变下的热变形激活能分别为436.469 6,399.20 kJ/mol;失稳加工窗口出现在3~10 s-1的高应变速率区;而经1 025~1 075℃,0.05~0.6 s-1变形后,出现晶粒尺寸为10μm的完全动态再结晶组织,因此该参数区间可作为GH4169合金的最佳热加工窗口。  相似文献   

6.
采用Gleeble-3500型热模拟试验机对Fe-0.2C-7Mn中锰钢进行单道次等温压缩试验,研究了该钢在不同变形温度(950~1 150℃)和应变速率(0.001~1 s-1)下的热变形行为,通过计算应变速率敏感指数、功率耗散效率以及失稳参数建立该钢的热加工图,并获得最佳的热加工工艺窗口。结果表明:随着应变速率的增加和变形温度的降低,该钢的流变应力增大;高变形温度和低应变速率有利于动态再结晶的发生,动态再结晶程度的差异会对应变速率敏感指数产生很大的影响;不同真应变下的失稳区均出现在高温高应变速率区域,并且基本与功率耗散图中的低功率耗散效率区域重合。试验钢的最佳热加工工艺窗口为变形温度975~1 100℃、应变速率0.006~1 s-1。  相似文献   

7.
在变形温度950~1050℃、应变速率0.01~5 s-1下对F45MnVS非调质钢进行不同变形量(5%~56%)的单道次压缩试验,研究了变形温度、应变速率和变形量对该钢变形行为和晶粒尺寸的影响;基于试验数据建立动态再结晶临界应变模型和平均晶粒尺寸模型,嵌入Deform软件中模拟了试验钢的动态再结晶平均晶粒尺寸.结果表明:随着变形量或应变速率的增大,或者变形温度的降低,试验钢的平均晶粒尺寸减小;较高应变速率下加工软化导致的应力下降不明显,动态再结晶程度较小,较低应变速率下则相反;模拟得到的再结晶平均晶粒尺寸与试验结果较吻合,且平均晶粒尺寸随变形温度、应变速率和变形量的变化规律与试验结果相符.  相似文献   

8.
利用Gleeble-1500材料热/力模拟机研究了高洁净微合金钢的变形抗力规律,讨论了不同形变温度对金属流变特性的影响并与两种工业钢X60(管道用钢)和XTE355(大桥用钢)进行了比较。变形抗力实验须720-1100℃进行,实验表明,随着变形温度的降低,金属的流变力明显升高;在低温区变形时(720-780℃),高洁净钢的变形抗力与两种工业钢无明显差别;相同变形温度条件下, 变形量增大时高洁净钢的变形抗力增加程度比两种工业钢小。  相似文献   

9.
采用热模拟试验机对60Si2CrVAT高强度弹簧钢在不同温度(900,950,1 050,1 150℃)和应变速率下(0.1,1,5,10s~(-1))进行热压缩变形,研究了变形温度和应变速率对该钢热变形行为的影响规律;在此基础上,根据Arrhenius双曲正弦方程,建立了该钢的热压缩变形本构方程。结果表明:该钢的流变应力随着变形速率的增大而增大,随变形温度的升高而减小,动态再结晶在高变形温度和低应变速率下更容易发生;真应变为0.2时的变形激活能为372kJ·mol~(-1),流变应力的计算值与试验值之间的平均相对误差为4.89%,吻合得较好。  相似文献   

10.
通过热压缩模拟试验研究了变形温度、变形量和应变速率对M50NiL轴承钢动态再结晶行为的影响。结果表明:变形温度低于900℃时,不会发生动态再结晶;温度升高到1 000℃时,再结晶进行得不充分,形成了混晶组织;当温度达到1 100℃时,动态再结晶完成充分,得到了细小均匀的等轴晶;温度升高到1 200℃时,晶粒有粗化的倾向;在变形温度为1 100℃和应变速率为10s~(-1)的条件下,随着变形量增加,动态再结晶形核率逐渐提高,当变形量增大到60%时,动态再结晶完成充分;在变形温度为1 100℃和变形量为60%的条件下,随着应变速率增大,动态再结晶形核率提高,当应变速率为20s~(-1)时,动态再结晶全部完成,得到细小、均匀分布的等轴晶。  相似文献   

11.
Al-Fe基合金的半固态压缩变形特性   总被引:1,自引:1,他引:0  
Al-Fe基合金具有较好的耐热性,但力学性能差.利用半固态成形技术制备该合金,可以有效地提高合金的力学性能,使该合金具备应用价值.由于合金的半固态成形工艺与它在半固态条件下的变形行为密切相关,因此,系统地研究Al-Fe基合金半固态条件下的压缩变形行为,可以为该合金的半固态成形工艺制定提供依据.采用INSTRON-5500R型电子万能试验机进行压缩变形试验,研究不同变形速率、变形程度以及变形温度,对电磁搅拌的Al-Fe基合金在半固态条件下,真实应力与真实应变的变化规律.试验结果表明:变形速率不同时,随着变形速率的增加,变形抗力增加;变形程度不同时,随着变形程度的增加,合金的总应变增加,试样中心部位的晶粒尺寸有减小的趋势且液相比例明显减少,而试样的边缘则变化不明显;变形温度不同时,真实应力的峰值随变形温度的降低而急剧增大,稳态应力变化则较小,中心部位的晶粒尺寸随着变形温度的降低而减小,液相比例也随之减少.  相似文献   

12.
在不同变形温度(275~350℃)和应变速率(5~25s~(-1))下,采用单道次大变形量(80%)轧制ZK60镁合金,研究了变形温度和应变速率对合金显微组织和拉伸性能的影响。结果表明:随着变形温度的升高和应变速率的增大,合金的再结晶体积分数增加;当变形温度不高于300℃时,随着应变速率的增大,再结晶晶粒尺寸先减小后增大,抗拉强度先增后降,伸长率增大;而当温度高于300℃时,再结晶晶粒尺寸先增大后减小再增大,抗拉强度先降低后增大再降低,伸长率增大;在温度300℃,应变速率10s~(-1)下轧制后,所得ZK60镁合金板的拉伸性能最好,抗拉强度和伸长率分别为358 MPa,21.5%。  相似文献   

13.
采用Gleeble-3500型热模拟试验机对40CrNiMo钢进行了单道次热压缩试验,得到了其在应变速率0.1~50s~(-1)、变形温度800~1 100℃下的应力-应变曲线,观察了变形后的显微组织并分析了热变形特征;建立了该钢的变形抗力模型并进行了试验验证。结果表明:较高的变形温度或较低的应变速率更有利于40CrNiMo钢的完全动态再结晶;变形温度为800℃时,应变速率增大使动态再结晶晶粒增多;应变速率为10s~(-1)条件下,当变形温度由800℃升至900℃时,动态再结晶晶粒增多,变形温度为1 000℃时,40CrNiMo钢发生了完全动态再结晶,变形温度为1 100℃时,动态再结晶晶粒长大;计算得到40CrNiMo钢的动态再结晶激活能为322.53kJ·mol~(-1);由周纪华-管克智模型计算得到的变形抗力与试验值的平均相对误差为4.82%,模拟精度较高。  相似文献   

14.
利用单道次、双道次热压缩试验研究铸态P91合金钢在热变形后的动态、静态、亚动态再结晶行为,探索不同变形温度、应变速率、变形量对静态、亚动态再结晶的影响并建立静态、亚动态再结晶动力学方程。研究得出:热变形结束后,静态再结晶率随变形温度、变形量及应变速率的增大而增大;亚动态再结晶率与变形温度、变形量和应变速率呈单调递增,并最终趋于稳定。以真应变为参数,铸态P91热变形后再结晶类型可按照真应变分为三种情况:当εε_c时,道次间隔主要发生静态再结晶;当ε_cεε_T时,同时发生静态、亚动态再结晶;当εε_T时,主要发生亚动态再结晶。通过对双道次压缩试样的显微组织分析得出:相同变形条件下,亚动态再结晶晶粒比静态再结晶细小,再结晶晶粒随变形温度增加而增大,随应变速率增大而减小。  相似文献   

15.
采用热模拟方法研究了18CrNiMo7-6齿轮钢在变形温度900~1 150℃、应变速率0.01~5 s-1条件下的热压缩变形行为;建立了基于Arrhenius模型的全应变本构方程,采用该方程对流变应力曲线进行预测;根据动态材料模型绘制热加工图,并结合热加工图系统地研究显微组织演变特征。结果表明:试验钢的峰值应力随应变速率的增加或变形温度的降低而增大,动态回复和动态再结晶是热变形过程中的主要软化机制;采用建立的全应变本构方程预测得到流变应力曲线与试验结果基本吻合,预测真应力与试验结果的相对误差小于4.715%,说明该模型可以精确地模拟18CrNiMo7-6齿轮钢的热压缩变形行为。试验钢的适合热加工工艺参数为变形温度1 050~1 150℃、应变速率0.1~1 s-1,此时组织为均匀细小的再结晶晶粒,晶粒尺寸在5~15μm。随着变形温度的升高或应变速率的降低,原始奥氏体晶粒不断被动态再结晶晶粒取代,且动态再结晶程度和再结晶晶粒尺寸增大。  相似文献   

16.
对49MnVS3非调质钢在变形温度750~1 000℃、应变速率0.1~50s~(-1)下进行单道次热压缩试验,根据真应力-真应变曲线得到周纪华-管克智变形抗力模型;分别采用艾克隆德模型和周纪华-管克智变形抗力模型计算49MnVS3非调质钢的平均单位轧制压力,并对计算结果进行了比较。结果表明:随着应变的增加,基于艾克隆德模型和周纪华-管克智变形抗力模型计算得到的平均单位轧制压力均增大;基于艾克隆德模型得到的平均单位轧制压力曲线波动较小,而基于周纪华-管克智变形抗力模型的波动则较大;在低应变速率下,基于艾克隆德模型计算得到的平均单位轧制压力较大,而在高应变速率下,基于周纪华-管克智变形抗力模型计算得到的平均单位轧制压力较大;基于周纪华-管克智变形抗力模型计算轧制力时,需要借助热模拟试验数据,该模型适用于控制模型;艾克隆德模型只需使用化学成分和轧制工艺参数即可计算平均单位轧制压力,应用更广泛,该模型适用于轧制工艺设计。  相似文献   

17.
采用Gleeble-3500热模拟机研究了7N01铝合金在变形温度为300℃~450℃、应变速率为0.01s~1s-1时的等温压缩热变形行为。结果表明:7N01铝合金的流变应力均在一个较小的应变时达到峰值,且随着应变速率的提高和变形温度的降低,流变应力峰值增加。在低应变速率(0.01s-1)时,7N01铝合金中出现了再结晶组织,随着变形温度的升高,再结晶晶粒数目增多且尺寸变大。7N01铝合金的显微硬度随着变形温度的升高和应变速率的增大而增大。  相似文献   

18.
选用Gleeble-3500型热模拟试验机在变形温度330~450℃、应变速率10-2~10 s-1、压缩变形量60%条件下对2219铝合金进行热压缩试验,研究了其在热变形过程中的动态再结晶行为;通过对试验数据进行分析拟合,建立了以Z参数表示的热变形特征参数模型,基于改进Avrami方程的动态再结晶动力学模型以及以变形温度、应变速率表示的再结晶晶粒尺寸模型.结果表明:在低应变速率和高变形温度下,2219铝合金更易于发生动态再结晶;根据动态再结晶动力学模型,最佳热加工条件为应变速率0.1 s-1、温度360℃,此时2219铝合金的动态再结晶程度最高;动态再结晶晶粒尺寸模型预测精度较高,线性相关系数达0.95.  相似文献   

19.
3104铝合金的流变应力行为与动态再结晶   总被引:6,自引:1,他引:6  
对3104铝合金在350-500℃以0.005-0.1s^-1的形变速率进行压缩,真应变为50%,随后立即水冷。采用真应力一真应变曲线和TEM研究其高温压缩变形中的流变应力行为和它的动态再结晶过程。结果表明:3104铝合金为正应变速率敏感材料,具有稳态流变的特征。流变应力随着变形速率的增加而增加,随着变形温度的升高而降低。在低形变温度(350℃)和低形变速率(0.035s^-1)下,该合金发生动态再结晶。  相似文献   

20.
采用Gleeble-3810型热模拟试验机在变形温度为8501 150℃、应变速率为0.01{50 s~(-1)的条件下对35CrMo钢铸坯进行了变形量为60%的热压缩变形试验,结合真应力-真应变曲线特征,研究了应变速率和变形温度对其压缩后显微组织的影响。结果表明:在不同条件下压缩变形后,试验钢的显微组织均具有动态再结晶特征;同一应变速率下,随着变形温度的升高,压缩后的动态再结晶晶粒逐渐变大;同一变形温度下,随应变速率的增大,动态再结晶晶粒逐渐变小;热压缩变形后,试验钢不同位置处的晶粒尺寸不同,中心区域大变形区的晶粒最为细小,随着距中心区域垂直距离和水平距离的增大,晶粒尺寸逐渐变大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号