首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
In this study, the extracellular polymeric substance of Scenedesmus quadricauda called EPS-S.q and its bioflocculatoin mechanism were investigated. Results showed EPS-S.q was successfully used as bioflocculating agent for S. quadricauda biomass harvesting and flocculation efficiency of up to 86.7% to S. quadricauda cells could be achieved in presence of Zn2+. EPS-S.q was the flocculating agent for self-flocculating microalga S. quadricauda and bioflocculation mechanism was polymer bridging. The sugar and protein mass fraction of dry EPS-S.q was sugar 56.7% and protein 41%. The infrared spectrum further indicated the presence of hydroxyl, carboxyl and amino groups. Moreover, pH decrease induced the flocculation of S. quadricauda and 78.4% of flocculation efficiency was the highest at pH 3. In addition, chemical flocculant FeCl3 was efficiently used for S. quadricauda harvesting and up to 96.8% of flocculation efficiency could be achieved for S. quadricauda culture with biomass concentration 0.21–0.39 g L−1 at pH 7.  相似文献   

2.
Five axenic cultures of microalgae were isolated from the wastewater of Almaty city and identified as Chlorella vulgaris strain 1, Chlorella sp. strain 3, Scenedesmus obliquus, Phormidium foveolarum and Lyngbya limnetica. Among these strains, C. vulgaris strain 1 was characterized by the maximum growth rate and the highest productivity. Mass cultivation of this strain in wastewater resulted in accumulation of 5 × 107 cells per ml in 16 days, and in the removal of ~95% of pollutants from water. Cells of C. vulgaris consisted of ~35% proteins, 29% carbohydrates, 30% lipids, and 6% ash, as calculated on a dry weight basis. The major fatty-acids of C. vulgaris were represented by palmitic, cis-7,10-hexadecenoic acid, linoleic, and α-linolenic acids. Culturing in wastewater decreased the unsaturation index of FAs. Thus, C. vulgaris cells are suitable for both waste water purification and accumulation of biomass for further biodiesel production.  相似文献   

3.
To increase microalgae biomass production and support high density cultures in photobioreactors artificial illumination systems have been designed to increase photosynthetic activity. Supplemental lighting systems are commonly composed by a combination of chlorophyll (a + b) strongly absorbed wavelengths, while weakly absorbed wavelengths are not present. At this work we compared the photosynthetic activity and biomass production induced by chlorophyll (a + b) strongly versus weakly absorbed wavelengths in Scenedesmus bijuga microalgae cultures at different biomass densities. Photosynthetic activity and biomass production induced by 4 different wavelengths using LEDs (blue – peak at λ470 nm; green – peak at λ530 nm; red – peak at λ655 nm; and white-4100 K) were measured and analyzed on high-density cultures of S. bijuga. As culture density increased the chlorophyll (a + b) weakly absorbed green light penetrated deeper into the samples inducing higher oxygen evolution at culture concentration of 1.45 g L−1 compared to the chlorophyll (a + b) strongly absorbed red light. High-density culture (2.19 g L−1) cultivated under green light showed higher biomass production rate (30 mg L−1 d−1) with a 8.43% biomass growth in a 6-day period compared to the same quantum flux of red light that induced 4.35% biomass growth on the same period. The integration of green LEDs into photobioreactors lighting apparatus could improve the existing systems composed predominantly by red and blue LEDs increasing biomass productivity of high-density cultures at latter stages of microalgae cultivation.  相似文献   

4.
In recent times, biohydrogen production from microalgal feedstock has garnered considerable research interests to sustainably replace the fossil fuels. The present work adapted an integrated approach of utilizing deoiled Scenedesmus obliquus biomass as feedstock for biohydrogen production and valorization of dark fermentation (DF) effluent via biomethanation. The microalgae was cultivated under different CO2 concentration. CO2-air sparging of 5% v/v supported maximum microalgal growth and carbohydrate production with CO2 fixation ability of 727.7 mg L?1 d?1. Thereafter, lipid present in microalgae was extracted for biodiesel production and the deoiled microalgal biomass (DMB) was subjected to different pretreatment techniques to maximize the carbohydrate recovery and biohydrogen yield. Steam heating (121 °C) in coherence with H2SO4 (0.5 N) documented highest carbohydrate recovery of 87.5%. DF of acid-thermal pretreated DMB resulted in maximum H2 yield of 97.6 mL g?1 VS which was almost 10 times higher as compared to untreated DMB (9.8 mL g?1 VS). Subsequent utilization of DF effluent in biomethanation process resulted in cumulative methane production of 1060 mL L?1. The total substrate energy recovered from integrated biofuel production system was 30%. The present study envisages a microalgal biorefinery to produce biohydrogen via DF coupled with concomitant CO2 sequestration.  相似文献   

5.
Combining solar PV based electrolysis process and textile dyeing industry wastewater for hydrogen production is considered feasible route for resource utilization. An updated experimental method, which integrates resource availability to assess the wastewater based hydrogen production with highlights of wastewater treatment, use of solar energy to reduce the high-grade electricity for electrolysis (voltage, electrode materials) efficiency of the process was employed. Results showed that maximum pollutant removal efficiency in terms of conductivity, total dissolved solids, total suspended solids, biological oxygen demand, chemical oxygen demand, hardness, total nitrogen and total phosphorus were obtained from ≅73% to ≅96% at 12 V with steel electrode for pollutant load. The maximum input voltage was found at 3 V for the best efficiency i.e. 49.6%, 67.8% and 57.1% with carbon, steel and platinum electrodes respectively. It was observed that with high voltage (12 V) of the electrolyte the rate of production of hydrogen was higher with carbon, steel and platinum electrodes. However, the increase in the efficiency of the production of hydrogen was not significant with high voltage, may be due to energy loss through heat during extra-over potential voltage to the electrodes. Hence, this integrated way provides a new insight for wastewater treatment and hydrogen energy production simultaneously.  相似文献   

6.
Global threats of fuel shortages in the near future and climate change due to green-house gas emissions are posing serious challenges and hence and it is imperative to explore means for sustainable ways of averting the consequences. The dual application of microalgae for phycoremediation and biomass production for sustainable biofuels production is a feasible option. The use of high rate algal ponds (HRAPs) for nutrient removal has been in existence for some decades though the technology has not been fully harnessed for wastewater treatment. Therefore this paper discusses current knowledge regarding wastewater treatment using HRAPs and microalgal biomass production techniques using wastewater streams. The biomass harvesting methods and lipid extraction protocols are discussed in detail. Finally the paper discusses biodiesel production via transesterification of the lipids and other biofuels such as biomethane and bioethanol which are described using the biorefinery approach.  相似文献   

7.
This study is concerned with comparing raw dairy wastewater (DWW) with blue-green medium (BG11 medium) for biofuel production. Three microalgae strains (Chlorella sp., Scenedesmus sp., and Chlorella zofingiensis) were cultured in tubular bubble column photobioreactors with two media separately. After 8 days of cultivation, DWW was demonstrated to be more suitable medium for microalgae biomass and lipid production than BG11 medium. The biomass and lipid produced within wastewater provided suitable feedstocks for anaerobic digestion and biodiesel conversion. Nutrients in wastewater were efficiently removed (>90% total nitrogen removal, approximately 100% ammonia removal, and >85% total phosphorus removal) during this process.  相似文献   

8.
J.A. Ogejo  L. Li 《Applied Energy》2010,87(10):3171-3177
The objective of this study was to assess the quantity and quality of biogas produced by co-digesting flushed dairy manure (FDM) and turkey processing wastewater (TPW). An attached growth digester with working volume of 15 L and a 3 L head space was operated at a 5 d hydraulic retention time using five feed mixes containing 100, 67, 50, 33, and 0% FDM by volume. The biogas yield ranged from 0.072 to 0.8 m3 [g VS?1] and the methane content (quality) of the gas ranging from 56% to 70%. Both the quantity and quality of the biogas increased as the proportion of TPW in the feed increased. An energy balance for the digester based on a dairy farm with 150 animals, showed that augmenting FDM with TPW at 1:1 and 1:2 ratios, feeds C and D, respectively, produced biogas with net positive energy to all year round. The gas produced was enough to run a 50 kW generator to produce electricity for about 5.5 and 9 h for the 1:1 and 1:2 feed mixes. However, the economics were not favorable if the benefits of the digester are based only on the value electricity to be produced. Either, other possible revenues such as carbon credit, renewable energy credits, green tags for electricity, putting a value to the environmental benefits of AD should be considered or subsidies from grants or other incentives programs to make the system economically viable.  相似文献   

9.
Present work describes a kinetic analysis of various aspects of biohydrogen production in batch test using optimized conditions obtained previously. Monod model and Logistic equation have been used to find growth kinetic parameters in batch test under uncontrolled pH. The values of μm, Ks, and Xm were 0.64 h−1, 15.89 g-COD L−1, and 7.26 g-VSS L−1, respectively. Modified Leudeking-Piret and Michaelis–Menten equation corroborates a flux of energy to hydrogen production pathway and energy sufficiency in the system. Modified Gompertz equation illustrates that the overall rate and hydrogen yield at 15 g-COD L−1 was higher compared to a dark fermentation of other wastewaters. Besides, Andrew's equation also suggests that since the higher value of KI (19.95 g-COD L−1), k (255 mL h−1 L−1) was not inhibited at high S. The experimental results implied that the entire products during the fermentation process were growth and substrate degradation associated. The result also confirms that the acetate and butyrate were substantially used for hydrogen production in acidogenic metabolism under uncontrolled pH.  相似文献   

10.
Microbial single-cell-protein (SCP) production from high-organic-strength industrial wastewaters is considered an attractive method for both wastewater purification and resource utilization. In the last two decades, pollutant removal-oriented yeast SCP production processes, i.e., yeast treatment processes, have attracted a great deal of attention from a variety of research groups worldwide. Different from conventional SCP production processes, yeast treatment processes are characterized by higher pollutant removal rates, lower production costs, highly adaptive yeast isolates from nature, no excess nutrient supplements, and are performed under non-sterile conditions. Furthermore, yeast treatment processes are similar to bacteria-dominated conventional activated sludge processes, which offer more choices for yeast SCP production and industrial wastewater treatment. This review discusses why highly adaptive yeast species isolated from nature are used in the yeast treatment process rather than commercial SCP producers. It also describes the application of yeast treatment processes for treating high-carboxyhydrate, oil-rich and high-salinity industrial wastewater, focusing primarily on high-strength biodegradable organic substances, which usually account for the major fraction of biochemical oxygen demand. Also discussed is the biodegradation of xenobiotics, such as color (including dye and pigment) and toxic substances (including phenols, chlorophenols, polycyclic aromatic hydrocarbons, etc.), present in industrial wastewater. Based on molecular information of yeast community structures and their regulation in yeast treatment systems, we also discuss how to maintain efficient yeast species in yeast biomass and how to control bacterial and mold proliferation in yeast treatment systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号