首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
在C9芳烃轻质化的研究中,分别以1,2,4-三甲苯、邻甲乙苯及异丙苯为原料,对它们在不同结构分子筛(包括纳米HZSM-5,Hβ,HMOR沸石)催化剂上的反应进行了研究。实验结果表明,Hβ催化剂的初始活性最高并表现出较好的歧化能力,纳米HZSM-5催化剂则表现出较好的的脱烷基能力,HMOR催化剂的性能介于前两者之间。在C9芳烃的反应中,带有伯烷基、仲烷基和叔烷基的C9芳烃反应活性依次增加。随反应温度的升高,带有伯烷基和仲烷基的C9芳烃依次进行异构化、歧化和脱烷基反应;而带有叔烷基的C9芳烃则以脱烷基反应为主。各催化剂的酸性强弱顺序为:HMOR>Hβ>纳米HZSM-5,其活性高低顺序为:Hβ>纳米HZSM-5>HMOR,这说明分子筛催化剂的结构对C9芳烃反应的影响大于其酸性的影响。  相似文献   

2.
选用一种ZSM-5分子筛,采用适当的沸石外表面改性方法制备了一种C8芳烃择形脱乙基催化剂。该催化剂的适宜制备条件为:使用分子筛硅铝比为A的ZSM-5;以一种适当的含硅化合物对催化剂进行1次液相沉积改性;硅烷化焙烧过程中空气流速为(D+100~D+200)mL?min;金属铂负载量为E%。该催化剂能使进入沸石孔道的乙苯高效脱除乙基,同时具有抑制二甲苯歧化和烷基转移副反应的功能。在反应温度为400℃、反应压力为1.8MPa、氢油摩尔比为1、质量空速为15h-1的条件下,在所制备的C8芳烃择形脱乙基催化剂作用下,乙苯转化率达到90.19%、二甲苯收率达到98.81%。  相似文献   

3.
选用一种ZSM-5分子筛,采用适当的沸石外表面改性方法制备了一种C8芳烃择形脱乙基催化剂。该催化剂的适宜制备条件为:使用分子筛硅铝比为A的ZSM-5;以一种适当的含硅化合物对催化剂进行1次液相沉积改性;硅烷化焙烧过程中空气流速为(D+100~D+200)mL/min;金属铂负载量为E%。该催化剂能使进入沸石孔道的乙苯高效脱除乙基,同时具有抑制二甲苯歧化和烷基转移副反应的功能。在反应温度为400℃、反应压力为1.8 MPa、氢油摩尔比为1、空速为15 h-1的条件下,在所制备的C8芳烃择形脱乙基催化剂作用下,乙苯转化率达到90.19%、二甲苯收率达到98.81%。  相似文献   

4.
歧化与烷基转移反应是芳烃生产的重要环节。综述了歧化与烷基转移反应目前主要应用的丝光(MOR)沸石、β沸石、ZSM-5沸石催化剂。MOR和β沸石主要用于甲苯歧化和C9的烷基转移反应,ZSM-5沸石主要用于甲苯的择形歧化反应。沸石催化剂适用的原料及反应由其结构、酸性等因素决定。优化分子筛的结构和酸性是歧化与烷基转移反应催化剂发展的方向。  相似文献   

5.
采用硅-金属氧化物对ZSM-5分子筛的结构与酸性进行了组合改性,制备出高选择性碳八芳烃脱烷基异构化催化剂,利用X射线衍射法、氨气吸附-程序升温脱附法等对制备催化剂的性质进行了表征,考察了氧化硅、氧化镁、氧化镧的负载量对碳八芳烃脱烷基型异构化反应中乙苯转化率、二甲苯收率、异构化率等的影响。结果表明:负载物均未影响改性ZSM-5分子筛催化剂的晶型结构,且分散均匀;金属氧化物的加入有助于调节催化剂的酸量,同时可降低催化剂表观活化能,使反应更易进行,降低芳烃损失;当氧化硅、氧化镁负载质量分数分别为2.5%,1.0%时,异构化反应中的二甲苯收率、异构化率、乙苯转化率依次为97.4%,24.4%,78.3%,改性催化剂综合性能最优。  相似文献   

6.
β沸石上甲苯歧化与C_9芳烃烷基转移反应规律   总被引:7,自引:0,他引:7  
依据甲苯歧化与C9芳烃烷基转移反应的实验结果对该复杂反应体系进行了简化处理。简化后的反应体系由甲苯歧化、甲苯与三甲苯烷基转移、甲乙苯加氢脱烷基 3个主反应和甲苯与甲乙苯烷基转移、乙苯加氢脱烷基和三甲苯歧化 3个副反应组成。经动力学参数估值确定了相应的动力学方程式 ;并从产物异构体的组成出发 ,讨论了 β沸石催化剂的择形性。  相似文献   

7.
β沸石上界苯歧化与C9芳烃烷基转移反应规律   总被引:4,自引:0,他引:4  
依据甲苯歧化与C9芳烃烷基转移反应的实验结果对该复杂反应体系进行了简化处理,简化后的反应体系由苯歧化,甲苯与三甲苯烷基转移,甲乙苯加氢脱烷基3个主反应和甲苯与甲乙苯烷基转移,乙苯加氢脱烷基和三甲苯歧化3个副反应组成。经动力学参数估值确定了相应的动力学方程式,并从产物异构体的组成出发,讨论了β沸石催化剂的择形性。  相似文献   

8.
重整C10+重芳烃的综合利用   总被引:2,自引:0,他引:2  
徐爱莲 《石化技术》2004,11(4):44-47
介绍了国内外C^ 10重芳烃的深加工工艺及深加工产品,综述了重质芳烃轻质化制取苯、甲苯、二甲苯等产品的工艺技术及催化剂。作为提高重质芳烃利用率、调节苯及二甲苯供需平稳的重要手段,重质芳烃轻质化技术主要有热加氢脱烷基制苯、催化加氢脱烷基制苯、加氢裂解制取轻芳烃、重芳烃非临氢裂解制取轻芳烃等。  相似文献   

9.
C_9~C_(10)芳烃脱烷基制二甲苯的探索研究   总被引:1,自引:0,他引:1  
在工业化甲苯脱烷基制苯Cr_2O_3/Al_2O_3催化剂上进行了C_9~C_(10)芳烃脱烷基制二甲苯的研究。结果表明,C_9~C_(10)芳烃加氢脱烷基反应的产物分布与反应温度密切相关,通过控制反应温度可使C_2~C_(10)芳烃脱烷基在中间产物二甲苯阶段终止,除二甲苯外,产物中只含有少量的甲苯和苯。该反应的催化剂应具有较高的低温度活性和良好的抗积炭能力以及有利于较大分子扩散的大孔结构。  相似文献   

10.
研究了硅酸乙酯或吡啶改性对纳米HZSM-5分子筛催化剂上苯与1,2,4-三甲苯反应体系中各反应的影响。结果表明:在苯与1,2,4-三甲苯反应体系中,1,2,4-三甲苯的脱烷基反应、烷基转移反应及异构化反应等一次反应主要在纳米HZSM-5外表面及孔口酸位上进行;苯与二甲苯之间的烷基转移反应、二甲苯的脱烷基反应等二次反应主要在纳米HZSM-5内表面酸位上进行;反应由B酸催化。  相似文献   

11.
以催化裂化轻汽油为原料,采用大连理工大学开发的SHY-DL催化剂在200 mL多功能固定床试验装置上进行了芳构化反应工艺条件的优化及长周期稳定运行试验。结果表明:随着反应温度升高,烯烃转化率,干气和液化石油气(LPG)收率,C_5~205℃馏分中芳烃质量分数均增加,C_(≥5)液体收率下降;随着反应压力增大,C_5~205℃馏分中芳烃质量分数和C_(≥5)液体收率减小;随着质量空速提高,烯烃转化率和C_5~205℃馏分中芳烃质量分数降低,而C_(≥5)液体收率则增加;在反应温度为380℃,反应压力为1.6 MPa,质量空速为3.0 h~(-1)的最佳工艺条件下,运行1 500 h后,C_(≥5)液体收率大于50%,C_5~205℃馏分中芳烃质量分数高于40%。  相似文献   

12.
C8芳烃异构化技术的选择研究   总被引:4,自引:1,他引:3  
阐述了乙苯脱乙基型和乙苯转化型C8芳烃异构化催化剂在反应活性、工艺条件、产品分布和处理量等方面的技术特点,结合上海石化新建600 kt/a芳烃联合装置项目情况,从催化剂的性能、联合装置物料平衡的测算结果、对二甲苯产出率等方面对不同技术路线进行了比较分析,在充分考虑原料特点的前提下,确定上海石化新建芳烃联合装置选择使用脱乙基型C8芳烃异构化催化剂。经济分析结果表明,所选技术路线具有装置投资省、目标产品生产成本相对较低的特点。  相似文献   

13.
以混合碳四芳构化反应液相产物为原料,采用MO/HMCM-56重芳烃脱烷基制苯、甲苯、二甲苯(BTX)催化剂,研究了芳构化液相产物中少量重组分的脱烷基反应性能。结果表明,在反应温度为460℃,反应压力为3.0 MPa,氢油体积比为1 600,质量空速为3.62 h-1的工艺条件下,在液相产物汽油馏分(馏程低于205℃)中,BTX质量分数至少可提高21.65个百分点;原料中柴油馏分(馏程不低于205℃)质量分数为9.5%,液相产物中柴油馏分的质量分数最低可降至2.0%。  相似文献   

14.
以管输蜡油为原料,考察了重油催化裂解条件下反应温度、剂油质量比、质量空速和水油质量比等不同操作条件对产物分布、低碳烯烃和轻质芳烃收率的影响,得到适宜的反应条件为:反应温度560 ℃,剂油质量比6,质量空速2 h-1,水油质量比10。对比了大庆蜡油和管输蜡油在相同操作条件下发生裂化反应时低碳烯烃和轻质芳烃的收率,得出随着反应深度的加大,石蜡基原料的轻质芳烃收率增长速率更快,大剂油比条件下生产的轻质芳烃甚至更多, 可以兼顾多产低碳烯烃和轻质芳烃。讨论了催化裂化反应中轻质芳烃的生成与转化途径,当转化深度较小时,轻质芳烃的来源以芳烃迁移反应为主,随着转化深度的增大,烯烃环化脱氢生成轻质芳烃的速率逐渐超过芳烃迁移反应。  相似文献   

15.
利用100 mL等温固定床实验装置,采用LAC芳构化催化剂,研究了丁烷芳构化生产芳烃的反应规律,主要考察了反应温度和空速对丁烷芳构化产品分布的影响。实验结果表明,高温和低空速可得到较高的液体收率和芳烃收率。随着反应温度的升高,丁烷芳构化反应的液体收率逐渐增大,同时干气产率也增加较快;随着进料空速的增大,丁烷芳构化反应的液体收率和干气收率逐渐减小,而液化石油气收率逐渐增大。反应温度和进料空速对n-C4H10的芳构化反应影响较大,而对i-C4H10的影响较小;i-C4H10较n-C4H10易转化为芳烃,当反应温度为460~540℃、质量空速为0.25~1.00 h-1时,以n-C4H10为原料能得到质量分数为17%~30%的轻质芳烃和质量分数为10%~16%的液化石油气,以i-C4H10为原料能得到质量分数为33%~41%的轻质芳烃和质量分数为21%~34%的液化石油气。在大量实验的基础上得到了丁烷单体烃芳构化反应的液体收率随工艺条件变化的经验关联式,利用此关联式在一定条件下可以预测不同组成丁烷芳构化反应的液体收率,关联式的绝对误差小于2.5%。  相似文献   

16.
在提升管中型催化裂化装置上,采用MLC-500催化剂,分别以全馏分和重馏分汽油为原料研究在催化转化过程中,汽油中的芳烃在不同反应温度下的转化规律.结果表明,以全馏分汽油为原料,反应温度较低时,主要发生芳环的烷基化反应;在较高温度下,芳环的烷基化反应和芳环上侧链的裂化反应都比较明显.以重馏分汽油为原料,在实验温度范围内主要发生芳环上侧链的裂化反应,随着反应温度的提高,裂化向含有较少碳数的芳烃转移.  相似文献   

17.
选用低含硫的廉价轻质油为原料,经加氢脱芳烃得到合格的链烷烃稀释剂。对多种催化剂进行了筛选,从中筛选出高芳烃饱和性能的催化剂,并考察了反应温度、压力、空速、氢油比、预处理条件等因素对催化剂活性的影响,确定了较佳的工艺条件。1000h的寿命试验结果表明,所选的催化剂具有良好的活性稳定性。经切割后的产品性能完全符合链烷烃稀释剂的指标,可替代进口稀释剂。  相似文献   

18.
传统的芳烃抽提工艺,需要使用1.0~3.5 MPa的高温(180~240 ℃)蒸汽,存在能耗高和高温导致溶剂性能加速恶化的弊端。采用常压低温液-液萃取法对催化裂化柴油进行脱除多环芳烃试验,对萃取脱芳烃 (萃取溶剂为环丁砜,A 剂)、芳烃回收(回收溶剂为B剂)、反萃取(反萃取溶剂为C剂)和溶剂再生等操作单元进行操作条件评选,结果表明:在评选出的最佳萃取脱芳烃条件(A剂/催化裂化柴油体积比1.5、萃取温度50 ℃、萃取时间5 min、相分离时间5 min)和芳烃回收条件[B剂/(A剂+芳烃)体积比0.2、萃取温度50 ℃、萃取时间4 min、相分离时间3 min]下,混合芳烃产品收率29.29%,混合芳烃质量分数为93.71%;在最佳反萃取条件[C剂/(A剂+B剂)体积比0.2、反萃取温度40 ℃、反萃取时间3 min、相分离时间3 min]和78 ℃减压蒸馏条件下,对溶剂进行再生,再生溶剂与新鲜溶剂的萃取效果基本保持不变。最后提出了催化裂化柴油液-液萃取脱芳烃的原则工艺流程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号