首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The BiVO4 additive was found effective for low-temperature firing of ZnNb2O6 polycrystalline ceramics below 950°C in air without a serious degradation in their microwave dielectric properties. Dense BiVO4-doped ZnNb2O6 samples of a relative sintered density over 95% could be prepared even at 925°C. An optimally processed specimen exhibited excellent microwave dielectric properties of Q · f = 55000 GHz, ɛr= 26, and τf=−57 ppm/°C. With increasing BiVO4 addition up to 20 mol% relative to ZnNb2O6, while the quality factor Q · f was gradually decreased, the relative dielectric constant, ɛr, was linearly increased and the temperature coefficient of resonant frequency, τf, was slightly increased. The variations in Q · f and ɛr are surely attributable to the residual BiVO4 in the ZnNb2O6 matrix. An unexpected slight increase in τf is probably due to the formation of the Bi(V,Nb)O4-type solid solution.  相似文献   

2.
The elastic modulus ( E ), the critical strain energy release rate ( G c), and the flexural strength (σ) have been determined for two partially dense alumina bodies produced from the same powder but with different initial densities. The mechanical properties were measured for specimens fabricated at four different relative densities. The measured elastic modulus, critical strain energy release rate, and a calculated critical stress intensity factor ( K c) were observed to be linearly related to (ρ–ρ0)/(1 –ρ0), where ρ is the current relative density and ρ0 is the initial relative density of the powder compact. With the observed linear relations for E, G c (or K c), and the assumption that the crack length responsible for failure was present in the initial powder compact and shrunk in proportion to the relative density change, a Griffith equation was constructed to estimate the strength at any relative density. This relation was in good agreement with measurements.  相似文献   

3.
The effects of substituting Nb5+ with Ta5+ on the microwave dielectric properties of the ZnNb2O6 ceramics were investigated in this study. The forming of Zn(Nb1− x Ta x )2O6 ( x =0–0.09) solid solution was confirmed by the measured lattice parameters and the EDX analysis. By increasing x , not only could the Q × f of the Zn(Nb1− x Ta x )2O6 ( x =0–0.09) solid solution be tremendously boosted from 83 600 GHz at x =0 to a maximum 152 000 GHz at x =0.05, the highest ɛr∼24.6 could also be achieved simultaneously. It was mainly due to the uniform grain morphology and the highest relative density of the specimen. A fine combination of microwave dielectric properties (ɛr∼24.6, Q × f ∼152 000 GHz at 8.83 GHz, τf∼–71.1 ppm/°C) was achieved for Zn(Nb0.95Ta0.05)2O6 solid solution sintered at 1175°C for 2 h.  相似文献   

4.
The microwave dielectric properties of CaTi1-χ(Al1/2Ta1/2)cHO3 solid solutions (0.3 ≤χ≤ 0.5) have been investigated. The ceramic samples had perovskite structures similar to CaTiO3. The partial substitution of Ti4+ by a coupled Al3+/Tas+ permitted improvement of the quality factor Q . The dielectric constant (τr) and temperature coefficient of resonant frequency (τr) decrease rapidly with an increase of χ. A new high-quality microwave dielectric material was found at χ= 0.46 with σr= 46.5, Q f = 27300 GHz, and πf= 0 ppm/°C. The relationship between microstructures and dielectric properties is presented.  相似文献   

5.
The microwave dielectric properties and microstructures of compounds in the solid solution series x BaTiO3–(1− x )La(Mg1/2Ti1/2)O3 (BTLMT) have been investigated. The structural phase transitions that occur as a function of x have been studied and are related to changes in the dielectric properties. For compounds where x ≤ 0.1, X-ray diffraction (XRD) showed evidence of 1:1 ordering between Mg and Ti cations. For x ≤ 0.3, XRD and electron diffraction revealed that compounds were tilted in both antiphase and in-phase. However, for 0.3 < x < 0.7, only antiphase tilting was present. The temperature coefficient of resonant frequency (τf) vs the relative permittivity (ɛr) was linear until x = 0.5 at which point in the solid solution the transition to a nontilted structure resulted in nonlinear behavior. τf values close to zero (−2 ppm/°C) were achieved at x = 0.5 (ɛr∼ 60), which had a quality factor ( Q · f o) of 9600 GHz.  相似文献   

6.
The Sr(B'0.5Ta0.5)O3 ceramics where B'=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Er, and Yb have been prepared by the conventional solid-state ceramic route and their microwave dielectric properties have been investigated. The structure and microstructure of the ceramics have been characterized by X-ray diffraction and scanning electron microscope techniques. The relative permittiviy (ɛr) varies linearly with B'-site ionic radii, except for La, and the temperature coefficient of resonant frequency (τf) varies linearly with the tolerance factor. The Sr(B'0.5Ta0.5)O3 ceramics have ɛr in the range 25.9–32, Q u× f =4500–54 300 GHz, and τf=−79 to −42 ppm/°C. A slight deviation from stoichiometry affects the dielectric properties of these double perovskites. Partial substitution of Ba for Sr could tune the dielectric properties. Addition of rutile (TiO2) lowered the sintering temperature and improved the dielectric properties of Sr(B'0.5Ta0.5)O3 ceramics.  相似文献   

7.
Low-loss dielectric ceramics based on Ba(B'1/2Ta1/2)O3 (B'=La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Y, Yb, and In) complex perovskites have been prepared by the solid-state ceramic route. The dielectric properties (ɛr, Q u, and τf) of the ceramics have been measured in the frequency range 4–6 GHz by the resonance method. The resonators have a relatively high dielectric constant and high quality factor. Most of the compounds have a low coefficient of temperature variation of the resonant frequencies. The microwave dielectric properties have been improved by the addition of dopants and by solid solution formation. The solid solution Ba[(Y1− x Pr x )1/2Ta1/2]O3 has x =0.15, with ɛr=33.2, Q u× f =51,500 GHz, and τf≈0. The microwave dielectric properties of Ba(B'1/2Ta1/2)O3 ceramics are found to depend on the tolerance factor ( t ), ionic radius, and ionization energy.  相似文献   

8.
Low-loss ceramics having the chemical formula Mg2(Ti1− x Sn x )O4 for x ranging from 0.01 to 0.09 have been prepared by the conventional mixed oxide route and their microwave dielectric properties have been investigated. X-ray powder diffraction patterns indicate the corundum-structured solid solutions for the prepared compounds. In addition, lattice parameters, which linearly increase from 8.4414 to 8.4441 Å with the rise of x from 0.01 to 0.09, also confirm the forming of solid solutions. By increasing x from 0.01 to 0.05, the Q × f of the specimen can be tremendously boosted from 173 000 GHz to a maximum 318 000 GHz. A fine combination of microwave dielectric properties (ɛr∼15.57, Q × f ∼318 000 GHz at 10.8 GHz, τf∼−45.1 ppm/°C) was achieved for Mg2(Ti0.95Sn0.05)O4 ceramics sintered at 1390°C for 4 h. Ilmenite-structured Mg(Ti0.95Sn0.05)O3r∼16.67, Q × f ∼275 000 GHz at 10.3 GHz, τf∼−53.2 ppm/°C) was detected as a second phase. The presence of the second phase, however, would cause no significant variation in the dielectric properties of the specimen, because the second phase properties are very similar to the primary phase. These unique properties, in particular, low ɛr and high Q × f , can be utilized as a very promising dielectric material for ultra-high-frequency applications.  相似文献   

9.
Low-temperature-sinterable (Zr0.8Sn0.2)TiO4 powders were prepared using 3 mol% Zn(NO3)2 additive and then compared with powders prepared using 3 mol% ZnO additive and no additives. Sintering at 1200°C for 2 h produced a dielectric ceramic with ρ= 98.6% of theoretical density (TD), ɛr= 38.4, Q × f (GHz) = 42000, and τ f =−1 ppm/°C. Sintering at 1250°C resulted in an excellent dielectric with ρ= 99% of TD, epsilonr= 40.9, Q × f (GHz) = 49000, and τ f =−2 ppm/°C. Scanning electron microscopy showed a microstructure with grains measuring 0.5 to 1 μm, and transmission electron microscopy revealed secondary phase in the grain boundaries.  相似文献   

10.
The effect of a bespoke glass sintering aid, 0.3Bi2O3–0.3Nb2O5–0.3B2O3–0.1SiO2 (BN1), developed from the base ceramic composition, BiNbO4 (BN), on the sinterability, microstructure, and microwave (MW) dielectric properties of BN ceramics has been investigated. Densities >97% theoretical could be achieved at 1020°C for samples with up to 15% BN1 additions. The resulting microstructure was composed of BN laths surrounded by a residual glass phase that contained small fibrous crystals. Some evidence of dissolution of BN crystals was observed. Optimum properties were exhibited for samples with 15 wt% of glass addition sintered for 4 h at 1020°C with a relative permittivity ɛr=38, a MW quality factor Q × f 0=17 353 at 5.6 GHz, and a temperature coefficient of resonant frequency τf=−10 ppm/°C. The high Q × f 0, ɛr, and low τf, coupled with a relatively low sintering temperature, suggest that the use of bespoke glass sintering aids of this type may have great potential for the fabrication of MW ceramics.  相似文献   

11.
The effect of B2O3 on the sintering temperature and microwave dielectric properties of Ba5Nb4O15 has been investigated using X-ray powder diffraction, scanning electron microscopy, and a network analyzer. Interactions between Ba5Nb4O15 and B2O3 led to formation of second phases, BaNb2O6 and BaB2O4. The addition of B2O3 to Ba5Nb4O15 resulted in lowering the sintering temperature from 1400° to 925°C. Low-fired Ba5Nb4O15 could be interpreted by measuring changes in the quality factor ( Q × f ), the relative dielectric constant (ɛr), and the temperature coefficient of resonant frequency (τf) as a function of B2O3 additions. More importantly, the formation of BaNb2O6 provided temperature compensation. The microwave dielectric properties of low-fired Ba5Nb4O15 had good dielectric properties: Q × f = 18700 GHz, ɛr= 39, and τf= 0 ppm/°C.  相似文献   

12.
The microwave dielectric properties of the (1− x )CaTiO3– x Ca(Zn1/3Nb2/3)O3 ceramic system have been investigated. The ceramic samples sintered at 1300°–1450°C for 4 h in air exhibit orthorhombic pervoskite and form a complete solid solution for different x value. When the x value increased from 0.2 to 0.8, the permittivity ɛr decreased from 115 to 42, the unloaded quality factor Q × f increased from 5030 to 13 030 GHz, and the temperature coefficient τf decreased from 336 to −28 ppm/°C. When x =0.7, the best combination of dielectric properties, a near zero temperature coefficient of resonant frequency of τf∼−6 ppm/°C, Q × f ∼10 860 GHz and ɛr∼51 is obtained.  相似文献   

13.
The dielectric properties of dense ceramics of the "twinned" 8H-hexagonal perovskite Ba8Nb4Ti3O24 are reported. Single-phase powders were obtained from the mixed-oxide route at 1325°C and ceramics (>92% of the theoretical X-ray density) by sintering in air or flowing O2 at 1400°–1450°C. The ceramics are dc insulators with a band gap >3.4 eV that resonate at microwave frequencies with relative permittivity, ɛr∼44–48, quality factor, Q × f r∼21 000–23 500 GHz (at f r∼5.5 GHz) and temperature coefficient of resonant frequency, TC f,∼+115 ppm/K.  相似文献   

14.
The dielectric properties of dense ceramics of the n =0 member of a newly identified homologous series Ba3+ n LaNb3Ti n O12+3 n , where n =0, 1, and 2, are reported. Single-phase powders can be obtained from the mixed-oxide route at 1350°C and dense ceramics (>97% of the theoretical X-ray density) with uniform microstructures (3–5 μm) can be obtained by sintering in air at 1500°C. The ceramics are excellent dc insulators with a band gap >2.6 eV that resonate at microwave frequencies with a relative permittivity, ɛr∼44, a quality factor, Q × f r, of ∼9000 at f r∼5.5 GHz and a temperature coefficient of resonant frequency, TCf,∼−100 ppm/K.  相似文献   

15.
The crystal structure and dielectric properties of LaYbO3 ceramics prepared by the mixed-oxide route have been investigated. Rietveld refinements performed on X-ray and neutron diffraction data show the room-temperature structure to be best described by the orthorhombic Pnma space group [ a =6.02628(9) Å, b =8.39857(11) Å, and c =5.82717(7) Å; Z =4, and theoretical density, D x =8.1 g/cm3] in agreement with electron diffraction experiments. LaYbO3 ceramics fired at 1600°C for 4 h attain ∼97% of D x and their microstructures consist of randomly distributed equiaxed grains with an average size of ∼8 μm. Conventional transmission electron microscopy shows densification to occur in the absence of a liquid phase and reveals domain-free grains. The relative permittivity, ɛr, of LaYbO3 ceramics at radio frequencies is ∼26 in the range ∼10–300 K; however, a small dielectric anomaly is detected at ∼15 K. At room temperature and microwave frequencies, LaYbO3 ceramics exhibit ɛr∼26, Q × f r∼20 613 GHz (at 7 GHz), and τf∼−22 ppm/K. Q × f r show complex subambient behavior, decreasing from a plateau value of ∼20 000 GHz between ∼300 and 200 K to a second plateau value of ∼6000 GHz at ∼90 K before decreasing to <1000 GHz at ∼10 K. The large decrease in Q × f r at low temperature may be related to the onset of antiferromagnetism at ∼2.7 K. 1  相似文献   

16.
A slurry method was used to determine the dielectric permittivity (ɛr) of BaTiO3 powders with different characteristics, such as tetragonality ( c / a ratio), density, particle size, and specific surface area. The ɛr of powders highly depended on their characteristics. In order to extract the effect of each characteristic, a statistical analysis was carried out to represent the ɛr of powders with an empirical formula. A fairly good agreement was obtained between observed data and those estimated from the formula. The ɛr decreased with particle size because of the size effect of BaTiO3 and high tetragonality and density was essential to obtain high ɛr of powders.  相似文献   

17.
The sintering behavior and dielectric properties of Bi3NbO7 ceramics prepared by the high-energy ball milling (HEM) method and conventional mixed oxides method with V2O5 addition were investigated. All the samples were sintered between 840° and 960°C. For the ceramics prepared by the mixed oxides method, the pure tetragonal Bi3NbO7 phase formed without any cubic phase. With changing sintering temperature, the dielectric constant ɛr lies between 79 and 92, while the Q × f values are between 300 and 640 GHz. The samples sintered at 870°C have the best microwave dielectric properties with ɛr=79, Q × f =640 GHz, and the temperature coefficients of resonant frequency τf between 0 and −20 ppm/°C. For the ceramics prepared by the HEM, a pure cubic phase was obtained. The ɛr changes between 78 and 80 and Q × f were between 200 and 290 GHz.  相似文献   

18.
The microwave dielectric properties and the microstructures of Nd(Zn1/2Ti1/2)O3 (NZT) ceramics prepared by the conventional solid-state route have been studied. The prepared NZT exhibited a mixture of Zn and Ti showing 1:1 order in the B-site. The dielectric constant values (ɛr) saturated at 29.1–31.6. The quality factor ( Q × f ) values of 56 700–170 000 (at 8.5 GHz) can be obtained when the sintering temperatures are in the range of 1300°–1420°C. The temperature coefficient of resonant frequency τf was not sensitive to the sintering temperature. The ɛ r value of 31.6, the Q × f value of 170 000 (at 8.5 GHz), and the τf value of −42 ppm/°C were obtained for NZT ceramics sintering at 1330°C for 4 h. For applications of high selective microwave ceramic resonators, filters, and antennas, NZT is proposed as a suitable material candidate.  相似文献   

19.
As a lead-free positive temperature coefficient of resistivity (PTCR) material, (1– x mol%) BaTiO3– x mol% (Bi1/2K1/2) TiO3– y mol% Y2O3–0.5 mol% TiO2 (BT– x BKT–2 y Y–0.5TiO2) systems were prepared by the conventional solid-state reaction method. All samples containing <2 mol% BKT sintered in air possessed relatively low room-temperature resistivity (ρ25) and high positive temperature coefficient (PTC) effect. However, when the BKT content exceeded 2 mol%, the sample was not semiconductive after sintering in air. The effects of sintering schedule on the properties of PTCR ceramics were discussed. The results showed that the optimum composition of BT–1BKT–0.2Y–0.5TiO2, sintered at 1330°C for not-soaking and then fast quenched in air, achieved rather low ρ25 of 28 Ω·cm and a high jump of resistivity (maximum resistivity [ρmax]/minimum resistivity [ρmin]) of 4.0 orders of magnitude with T c about 155°C. The ρ25 of the as-sintered sample could be further reduced to about 10 Ω·cm by annealing in N2 at 450°C for 30 min, accompanied decrease on the PTC effect.  相似文献   

20.
Microwave Characteristics of BaO-TiO2 Ceramics Prepared via a Citrate Route   总被引:3,自引:0,他引:3  
Microwave dielectrics of the TiO2-rich BaO-TiO2 system (BaTi4O9 and Ba2Ti9O20) were prepared by the citrate route. Pure and well-crystallized BaTi4O9 and Ba2Ti9O20 particles of nanometer size (30–50 nm) could be obtained by thermal decomposition of citrate gel precursors. After sintering at 1200°–1350°C (for 2–10 h), dense compounds with >90% of theoretical density could be obtained. Dielectric properties of disk-shaped sintered specimens, in the microwave frequency region, were measured in the TE01δ mode. They were found to have excellent microwave characteristics: for BaTi4O9, εr= 36, Q = 4900 at 10.3 GHz, and τf= 16 ppm/°C; and for Ba2Ti9O20, εr= 37, Q = 5300 at 10.7 GHz, and τf=−6.0 ppm/°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号