首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vapor-deposited micro heat pipe arrays (VDMHP) were fabricated as an integral part of semiconductor devices to act as efficient heat spreaders by reducing the thermal path between the heat sources and heat sink. Fabrication of the VDMHP was accomplished by first establishing a series of grooves in a silicon wafer. Orientation dependent etching (ODE) using a KOH-1-propanol-H2O solution on a (100) wafer with a (111) flat covered with an oxide mask, resulted in grooves 25 μm wide and 25 μm deep with sharp, perpendicular edges. The wafers were predeposited with a layer of chromium followed by a layer of gold to improve the adhesion characteristics. Dual electron beam vapor deposition, followed by planetary process using molybdenum crucibles, were used to deposit copper 31.5-33.0 μm thick, and provide complete closure of the grooves. A glass cover slip was bonded on the top of the deposited layer. The grooves were finally charged and sealed. A computer model Simulation and Modeling of Evaporated Deposition Profiles (SAMPLE) was used to optimize the metal step coverage and successfully predict the cross-sectional profile of the VDMHP  相似文献   

2.
Microlens fabrication using an etched glass master   总被引:2,自引:0,他引:2  
This paper presents a micromachining technique to fabricate microlenses using an etched glass master. The isotropic etching profile of the glass master was utilized for microlens replication. The master was treated by C4F8 plasma to form a conformal anti-adhesion layer. Lens arrays were replicated on polymer substrates by hot embossing. Microlenses with a large numerical aperture could be fabricated with this method. This work facilitates and simplifies fabrication steps for microlenses.  相似文献   

3.
In UV-lithography, a gap between photoresist and UV-mask results in diffraction. Fresnel or near-field diffraction in thick positive and negative resists for microstructures resulting from a small gap in contact or proximity printing has been previously investigated. In this work, Fraunhofer or far-field diffraction is utilized to form microlens arrays. Backside-exposure of SU-8 resist through Pyrex 7740 transparent glass substrate is conducted. The exposure intensity profile on the interface between Pyrex 7740 glass wafer and negative SU-8 resist is modeled taking into account Fraunhofer diffraction for a circular aperture opening. The effects of varying applied UV-doses and aperture diameters on the formation of microlens arrays are described. The simulated surface profile shows a good agreement with the experimentally observed surface profiles of the microstructures. The paper demonstrates the ease with which a microlens array can be fabricated by backside exposure technique using Fraunhofer diffraction.  相似文献   

4.
数字聚合酶链式反应(dPCR)技术是一种核酸绝对定量技术,但现有dPCR平台因其昂贵的设备或复杂的操作限制了其实际应用.利用气体膨胀浇注成型技术,结合集成微腔阵列的模具,设计、制作了一种成本低廉、简单可靠的dPCR微流控芯片.独特的球形微腔为液滴存储提供了更稳定的几何形式,保证了样品数字离散化的可靠性和稳定性.同时,芯片还利用预脱气的聚二甲基硅氧烷(PDMS)实现自动进样和样品离散化,大大降低了对复杂昂贵设备的依赖,且提供了更高集成度.利用芯片进行了EGFR基因第19号外显子数字PCR定量检测,验证了该芯片的实用性.  相似文献   

5.
A simple process has been developed which combines thick single-crystal Si micromechanical devices with a bipolar complimentary metal-oxide-semiconductor (BiCMOS) integrated circuit process. This merged process allows the integration of Si mechanical resonators as thick as 11 μm with any integrated circuit process with the addition of only a single masking step. The process does not require the use of Si on insulator wafers or any type of wafer bonding. The Si resonators were etched in an inductively coupled plasma source which allowed deep trenches to be fabricated with high aspect ratios and smooth sidewall surfaces. Clamped-clamped beam Si resonators that were 500 μm long, 5 μm wide, and 11 μm thick have been fabricated and tested. A typical resonator had a resonance frequency of 28.9 kHz and a maximum amplitude of vibration at resonance of 4.6 μm in air. The average measured resonance frequency across a 4-in-diameter Si wafer was within 0.5% of that predicted by theory. Working NMOS transistors were fabricated and tested on the same chip as the resonator with measured threshold voltages of 0.6 V and an output conductance of 2.0×10 -5 Ω-1 for a gate voltage of 4 V  相似文献   

6.
With the use of silicon micromachining, an inorganic membrane sieve for microfiltration has been constructed having a silicon nitride membrane layer with thickness typically 1 μm and perforations typically between 0.5 μm and 10 μm in diameter. As a support a 〈100〉-silicon wafer with openings of 1000 μm in diameter has been used. The thin silicon nitride layer is deposited on an initially dense support by means of a suitable chemical vapor deposition method (LPCVD). Perforations in the membrane layer are obtained with use of standard photo lithography and reactive ion etching (RIE). The deflection and maximum load of the membrane sieves are calculated in a first approximation. Experiments to measure the maximum load of silicon-rich silicon nitride membranes have confirmed this approximation  相似文献   

7.
A novel etch-diffusion process is developed for fabricating high-aspect-ratio Si structures for microsensors. This is accomplished by first dry etching narrow gap Si microstructures using an electron cyclotron resonance (ECR) source, followed by a shallow B diffusion to fully convert the etched microstructures to p++ layer. Microstructures up to 40 μm deep with 2-μm-wide gaps were etched with a Cl2 plasma generated using the ECR source. Vertical profile and smooth morphology were obtained at low pressure. A shallow B diffusion at 1175°C for 5.5 h. was then carried out to convert the 40-μm-thick resonant elements to p++ layer. A second dry etching step was used to remove the thin p++ layer around the bottom of the resonant elements, followed by bonding to glass and selective wet etch. Released high-aspect-ratio Si microsensors with thicknesses of 35 μm have been demonstrated. At atmospheric pressure, only 5 Vdc driving voltage is needed for 2.5 μm vibration amplitude, which is less than the 10 Vdc required to drive 12-μm-thick resonators fabricated by conventional dissolved wafer process  相似文献   

8.
We developed an advanced method for fabricating microfluidic structures comprising channels and inputs/outputs buried within a silicon wafer based on single level lithography. We etched trenches into a silicon substrate, covered these trenches with parylene-C, and selectively opened their bottoms using femtosecond laser photoablation, forming channels and inputs/outputs by isotropic etching of silicon by xenon difluoride vapors. We subsequently sealed the channels with a second parylene-C layer. Unlike in previously published works, this entire process is conducted at ambient temperature to allow for integration with complementary metal oxide semiconductor devices for smart readout electronics. We also demonstrated a method of chip cryo-cleaving with parylene presence that allows for monitoring of the process development. We also created an observation window for in situ visualization inside the opaque silicon substrate by forming a hole in the parylene layer at the silicon backside and with local silicon removal by xenon difluoride vapor etching. We verified the microfluidic chip performance by forming a segmented flow of a fluorescein solution in an oil stream. This proposed technique provides opportunities for forming simple microfluidic systems with buried channels at ambient temperature.  相似文献   

9.
This paper presents the design, fabrication and complete characterization of a high-sensitivity polyimide-based humidity sensor for monitoring internal humidity level in anodically bonded hermetic micropackages. This capacitive sensor is 1 mm on a side and utilizes CU1512 polyimide film with a thickness in the range from 300 Å to 1200 Å sandwiched between two metal electrodes to sense moisture. The measured sensitivity for a sensor with a 1200-Å-thick film is 0.86 pF/%RH, and for a 300-Å-thick sensor is 3.4 pF/%RH. The sensor has been exposed to and survived a one-hour test at 400°C, which is the temperature typically used to perform anodic bonding. Measurements show a drift of less than 1% RH at 50% RH and 37°C for 48 h, and a hysteresis of <2% RH over a range from 30 to 70% RH for a 1200-Å-thick polyimide film sensor. The measured breakdown voltage of the sensor (1200 Å thick) exceeds 20 V and agrees well with other results  相似文献   

10.
A fabrication process for the simultaneous shaping of arrays of glass shells on a wafer level is introduced in this paper. The process is based on etching cavities in silicon, followed by anodic bonding of a thin glass wafer to the etched silicon wafer. The bonded wafers are then heated inside a furnace at a temperature above the softening point of the glass, and due to the expansion of the trapped gas in the silicon cavities the glass is blown into three-dimensional spherical shells. An analytical model which can be used to predict the shape of the glass shells is described and demonstrated to match the experimental data. The ability to blow glass on a wafer level may enable novel capabilities including mass-production of microscopic spherical gas confinement chambers, microlenses, and complex microfluidic networks  相似文献   

11.
设计了一种用于微尺度流动状态下电阻抗成像检测的多电极阵列微流控芯片,包括微流控芯片的结构设计、材料选择和加工工艺。设计的微流控芯片包含3个圆形电极横截面,每个横截面包含一组电极阵列。该阵列有3种数目的电极,分别为8电极,12电极和16电极。之后通过数值仿真方法实现了三种电极数目(8,12和16)微流控芯片的电阻抗成像,并与之前研究出来的菱形横截面8电极微流控芯片进行了对比,发现设计出来的16电极圆形微流控芯片具有较高的成像质量,验证了微流控芯片用于细胞电阻抗成像检测的可行性。  相似文献   

12.
A processing technique that aligns features on the front side of a wafer to those on its backside has been developed for bulk micromachining. A 30 μm-square and 1.6 μm-thick diaphragm serves as an alignment pattern. At the same time that the alignment diaphragm is made, much thicker, large-area diaphragms can be partially etched using `mesh' masking patterns in these areas. The mesh-masking technique exploits the etch-rate differences between (100) and (111) planes to control the depths reached by etch pits in selected areas. The large partially etched diaphragms (2 to 3 mm2, roughly 100 μm thick) are sufficiently robust to survive subsequent IC-processing steps in a silicon-foundry environment. The thin alignment diaphragm can be processed through these steps because of its very small area. The partially etched diaphragms can be reduced to useful thicknesses in a final etch step after the circuits have been fabricated  相似文献   

13.
This paper reports an innovative technique for rapid fabrication of polymeric microlens arrays based on UV roller embossing process. In this method, a thin flat mold is fabricated by electroforming of nickel against a microlens master. The thin Ni mold with microlens cavities is then wrapped onto cylinder to form the roller. During rolling operation, the roller pressing and dragging the UV-curable photopolymer layer on the glass substrate through the rolling zone, the microlens array is formed. At the same time, the microlens array is cured by the UV light radiation while traveling through the rolling zone. The technique can be developed to an effective roll-to-roll process at room temperature and with low pressure. In this study, a roller embossing facility with UV exposure capacity has been designed, constructed and tested. Under the proper processing conditions, the 100×100 arrays of polymeric microlens, with a diameter of 100 μm, a pitch of 200 μm and a sag height of 21 μm can be successfully fabricated.  相似文献   

14.
Yang  H.  Shyu  R. F.  Huang  J.-W. 《Microsystem Technologies》2006,12(10):907-912

A new method for producing microlens array with large sag heights is proposed for integrated fluorescence microfluidic detection systems. Three steps in this production technique are included for concave microlens array formations to be integrated into microfluidic systems. First, using the photoresist SU-8 to produce hexagonal microchannel array is required. Second, UV curable glue is injected into the hexagonal microchannel array. Third, the surplus glue is rotated by a spinner at high velocity and exposed to a UV lamp to harden the glue. The micro concave lens molds are then finished and ready to produce convex microlens in poly methsiloxane (PDMS) material. This convex microlens in PDMS can be used for detecting fluorescence in microfluidic channels because a convex microlens plays the light convergence role for optical fiber detection.

  相似文献   

15.
This paper describes a fabrication technique for building three-dimensional (3-D) micro-channels in polydimethylsiloxane (PDMS) elastomer. The process allows for the stacking of many thin (less than 100-μm thick) patterned PDMS layers to realize complex 3-D channel paths. The master for each layer is formed on a silicon wafer using an epoxy-based photoresist (SU 8). PDMS is cast against the master producing molded layers containing channels and openings. To realize thin layers with openings, a sandwich molding configuration was developed that allows precise control of the PDMS thickness. The master wafer is clamped within a sandwich that includes flat aluminum plates, a flexible polyester film layer, a rigid Pyrex wafer, and a rubber sheet. A parametric study is performed on PDMS surface activation in a reactive-ion-etching system and the subsequent methanol treatment for bonding and aligning very thin individual components to a substrate. Low RF power and short treatment times are better than high RF power and long treatment times, respectively, for instant bonding. Layer-to-layer alignment of less then 15 μm is achieved with manual alignment techniques that utilize surface tension driven self-alignment methods. A coring procedure is used to realize off-chip fluidic connections via the bottom PDMS layer, allowing the top layer to remain smooth and flat for complete optical access  相似文献   

16.
Thermally actuated microprobes for a new wafer probe card   总被引:3,自引:0,他引:3  
A new type of MEMS microprobe was designed and fabricated which can be used for a nest generation wafer probe card. A prototype MEMS probe card consisting of an array of microprobes individually actuated by bimorph heating to make contact with the test chip was also fabricated. This probe card is called the CHIPP (Conformable, HIgh-Pin count, Programmable) card and can be designed to contact up to 800 I/O pads along the perimeter of a 1-cm2 chip with a microprobe repeat distance of approximately 50 μm. Microprobes for a prototype CHIPP probe card have been fabricated with a variety of cantilever structures including Al-SiO2, W-SiO2 and Al-Si bimorphs, and with the resistive heater placed either inside or on the surface of the cantilever. Ohmic contacts between tips and bond pads were tested with contact resistance as low as 250 mΩ. The deflection efficiency varies from 5.23-9.6 μm/mW for cantilever lengths from 300-500 μm. The maximum reversible deflection is in the range of 280 μm. The measured resonant frequency is 8.16 kHz for a 50×500 μm device and 19.4 kHz for a 40×300 μm device. Heat loss for devices operating in air was found to be substantially higher than for vacuum operation with a heat loss ratio of about 2/1 for a heater inside the structure, and 4.25/1 for a structure with the heater as an outer layer of the cantilever  相似文献   

17.
This study proposes a method named as ferrofluid-molding method for polymer microlens array fabrication. In this method, the master of the mother mold for microlens molding is an array of ferrofluid droplets. We generated droplet arrays by inducing the droplet’s magnetic hydrodynamic instability under different magnetic fields, and used the field-dependent droplet dimensions to fabricate numerous mold cavities. By this we could fabricate arrays of microlens with different bottom area, height, radius of curvature, and focal length. From our analysis, all the fabricated microlens arrays possessed good uniformity, and the largest numerical aperture of our microlens array was found as 0.54. In addition, we also designed a light uniformity experiment to demonstrate a potential application of our microlens arrays.  相似文献   

18.
The investigation of a novel sensor system, integrated in the main load region of forming machines, is the challenge. Therefore, it is important that the thin film system has an excellent tribological quality in combination with a piezoresistive behaviour. The layer system is deposited on the polished surface of a steel substrate. It has such geometries that it can be easily integrated in the drawing cushion of a deep drawing machine. The thin film sensor system exists out of a piezoresistive hydrogenated carbon layer. Onto this layer arrays of chromium structures are deposited. The structures are protected against wear by an insulating silicon doped hydrogenated carbon layer. The whole thin film system has a thickness of about 9 μm. During the forming process the steel plate is in direct touch with the sensor system and moves over it. The position of the steel is measured in dependence on the forming stadium. The sensor system works as a control system to ensure that the shape of the product is perfect and without any cracks or creases.  相似文献   

19.
Wafers that are to be submitted to anisotropic etching in aqueous KOH are conventionally passivated with a silicon dioxide or nitride layer in which backside windows are etched to define the microstructures. A different method to mask the backside of a silicon wafer for this purpose is presented. The method makes use of the phenomenon that silicon is not etched in KOH when biased above the passivation potential. The mask is defined by applying a set of bias voltages to the front of the wafer instead of patterning a deposited passivation layer at the backside, for which an accurate double-sided alignment is required. The feasibility of the method was demonstrated with the fabrication of membranes and suspended masses of various sizes  相似文献   

20.
A simple and novel combination of ultra-precision diamond ball-end milling and micro injection molding technique is described to produce precise microlens arrays out of polycarbonate (PC), polymethylmethacrylate (PMMA) as well as polystyrene (PS). The microlens arrays consist of 100 lenses in a 10 × 10 array with a lens radius of 273 μm, a lens diameter of 300 μm and a lens depth of 45 μm. Pitch between the lenses is fixed at 800 μm. The injection molding parameters were optimized to get precise microlens geometries with low surface roughness. The results show a precise diamond milled mold insert and injection molded microlens arrays with minor deviations in radius and surface roughness of the microlenses, particularly for microlens arrays out of PMMA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号