首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
This paper relates to the Bridge Building Award, which was presented to the author (Toshihiro Ishikawa) by the American Ceramic Society on 27 January 2020. We have developed many types of functional ceramics using polycarbosilane as a raw material. Since 1983, several grades of SiC-based fibers have been produced from polycarbosilane by Ube Industries, Ltd. Of these grades, we developed the highest heat-resistant SiC-polycrystalline fiber (Tyranno SA), which can withstand up to 2000°C, using an organic silicon polymer (poly-aluminocarbosilane) containing a small amount of aluminum as a precursor material. By employing curing (in air) and firing (in nitrogen atmosphere at 1300°C) processes using the precursor fiber, an amorphous fiber (Si-Al-C-O fiber) containing a small amount of aluminum was obtained; subsequent heat treatment at higher temperatures (~2000°C) in argon atmosphere led to carbothermal reduction (SiO2 + 3C SiC + 2CO(g)) and a sintering process, producing the abovementioned SiC-polycrystalline fiber (Tyranno SA). In the same year, using the same raw precursor fiber (Si-Al-C-O fiber), we also developed a new type of tough, thermally conductive SiC composite (SA-Tyrannohex) with high strength up to 1600°C in air. This ceramic consists of a highly ordered, close-packed structure of very fine hexagonal columnar SiC-polycrystalline fibers with a thin interfacial carbon layer between them. Further, by using the polycarbosilane as a starting material, we successfully developed a strong photocatalytic fiber (TiO2/SiO2 fiber) with a gradient surface layer composed of TiO2-nanocrystals, making the best use of controlled phase separation (bleed-out) of additives (titanium (IV) tert-butoxide) contained in polycarbosilane. In this paper, the story of the development of these materials and the subsequent progress will be described along with the historical background.  相似文献   

2.
A chemical adsorption method in a Si3N4 slurry that contained a nitrate solution was studied during ball milling, with particular interest in increasing the oxide layer in the Si3N4 powder and improving the distribution homogeneity of the sintering additives. The nitrate salts Al(NO3)3·9H2O and Y(NO3)3·6H2O were selected as sintering additives. The following characterization techniques were used: oxygen–nitrogen analysis, X-ray photoelectron spectroscopy, high-resolution electron microscopy (coupled with energy-dispersive X-ray spectroscopy), and X-ray imaging (using wavelength-dispersive X-ray spectroscopy). The thickness of the amorphous layer and the oxygen content of the Si3N4 powder were greater for samples that were milled with nitrate additives, which were heat-treated at 600°C, than those of powders that were milled with oxide additives. The chemical composition of the oxygen-containing layer—that is, the amorphous layer that formed and/or changed on the Si3N4 surface—was similar to Si2N2O in heat-treated Si3N4 powder with nitrate additives, whereas the composition of heat-treated Si3N4 powder with oxide additives was similar to SiO2. Furthermore, a homogeneous distribution of the additives was achieved via the incorporation of aluminum and yttrium into the amorphous layer on the Si3N4 surface. The metal ratio (Y:Al) of the adsorbates was somewhat higher than that of the additives.  相似文献   

3.
Coatings of yttrium aluminum garnet (Y3Al5O12, YAG), which is a promising high-temperature ceramic, were developed for the first time using a novel precursor plasma spraying (PPS) technique. The precursor sol was sprayed using a radio-frequency induction plasma technique. X-ray diffraction analysis of the as-sprayed coatings confirmed that a metastable hexagonal yttrium aluminate (H-YAlO3) was the major phase. The above-described specimen, on further treatment with plasma, was converted to cubic garnet (YAG) as the major phase, with a minor amount of orthorhombic YAlO3 (O-YAP) phase. 27Al magic-angle spinning nuclear magnetic resonance of the YAG coating corroborated the X-ray results and confirmed the presence of YAG and O-YAP phases. Formation of the garnet phase through the PPS technique is proof that the chemistry can be controlled in the plasma. This finding opens up new avenues for developing complex functional oxide deposits.  相似文献   

4.
This paper deals with the specific interaction of the dispersant 3,6,9-trioxadecanoic acid (TODA) with nano-ZrO2 surfaces. Special interest was directed towards degradation behavior of the adsorbates and its influence on dispersant capabilities of TODA regarding stabilization of ethanolic nano-ZrO2 suspensions. ZrO2 adsorption sites and the adsorbates formed are examined by diffuse reflectance infrared Fourier transform spectroscopy, thermal analysis, 1H-, and 13C-cross polarization magic angle spinning solid-state nuclear magnetic resonance spectroscopy. 1H as well as 13C-chemical shifts and the configurations of the corresponding adsorbed TODA species on zirconia sites are predicted by means of density functional theory quantum chemical calculations for supporting the interpretation of the experimental spectral data obtained. This work shows that combination of analytical and theoretical methods is an effective approach characterizing surface chemical properties of ceramic materials, determining sorption properties of organic process additives, investigating correspondent elementary and degradation reactions as well as clarifying cause-effect relationships in ceramic processes.  相似文献   

5.
Strength of Green Ceramics with Low Binder Content   总被引:2,自引:0,他引:2  
Acrylic-based polymers are common binders that impart high green strength (>2 MPa) at low concentrations (<5.0 vol%). Strength at low binder concentrations may be determined by chemical bonding at the ceramic–polymer interface. We have studied the binding mechanisms as a function of ceramic surface chemistry using a cross-linkable binder, which is based on a soluble poly(acrylic acid) (PAA, MW = 60 000) and glycerol. The cross-linked PAA binder system has been integrated into a solid freeform fabrication process, which provides a means of fabricating very reproducible green bodies, including SiO2, TiO2, Al2O3, multicomponent oxides, and non-oxides, with uniform density and composition. The ceramic parts contain only 2.5 vol% binder (solids basis), which increases the strength of the ceramic systems by at least a factor of 8 while the strength of Al2O3 components increases by a factor of ∼24 (0.3 to 7.6 MPa). Addition of the binder improves the toughness of the ceramic bodies by an order of magnitude with SiO2 representing the largest relative increase (2.8 × 10−3 to 4.4 × 10−2 MPa·m1/2). The mechanical properties are dictated by two binding mechanisms: binder adsorption and mechanical interlocking. High green strengths result from adsorption of the binder onto the ceramic surface whereas toughness is enhanced by poor adhesion of the binder to the ceramic surface.  相似文献   

6.
The phase distribution for ceramic coatings formed by microarc oxidation (MAO) on 2024 aluminum alloy was investigated using X-ray diffraction. The results showed that the ceramic coatings mainly consisted of α-Al2O3 and γ-Al2O3 phases. The percentage of α-Al2O3 gradually increased from the external surface to the interface between the coating and the substrate of samples. The surface layer of coatings mainly contained the γ-Al2O3 phase, and its fraction of the composition remained almost constant with oxidation time. It is believed that the difference in the amounts of α-Al2O3 and γ-Al2O3 phases in the different layers of coatings was caused by the various cooling rates of molten Al2O3, which temporarily existed in the microarc zone.  相似文献   

7.
Fabrication of Translucent Magnesium Aluminum Spinel Ceramics   总被引:5,自引:0,他引:5  
A precursor for magnesium aluminum spinel powder, composed of crystalline ammonium dawsonite hydrate (NH4Al(OH)2CO3·H2O) and hydrotalcite (Mg6Al2(CO3)(OH)16·4H2O) phases, was synthesized via precipitation, using ammonium bicarbonate as the precipitant. The precursor was characterized by differential thermal analysis/thermogravimetry, X-ray diffractometry, and scanning electron microscopy. Reactive spinel powder, which could be densified to translucency under vacuum at 1750°C in 2 h without additives, was obtained by calcining the precursor at 1100°C for 2 h.  相似文献   

8.
The fabrication of transparent Nd3+ ion-doped Lu2O3 ceramics is investigated by pressureless sintering under a flowing H2 atmosphere. The starting Nd-doped Lu2O3 nanocrystalline powder is synthesized by a modified coprecipitant processing using a NH4OH+NH4HCO3 mixed solution as the precipitant. The thermal decomposition behavior of the precipitate precursor is studied by thermogravimetric analysis and differential thermal analysis. After calcination at 1000°C for 2 h, monodispersed Nd3+:Lu2O3 powder is obtained with a primary particle size of about 40 nm and a specific surface area of 13.7 m2/g. Green compacts, free of additives, are formed from the as-synthesized powder by dry pressing followed by cold isostatic pressing. Highly transparent Nd3+:Lu2O3 ceramics are obtained after being sintered under a dry H2 atmosphere at 1880°C for 8 h. The linear optical transmittance of the polished transparent samples with a 1.4 mm thickness reaches 75.5% at the wavelength of 1080 nm. High-resolution transmission electron microscopy observations demonstrate a "clear" grain boundary between adjacent grains. The luminescent spectra showed that the absorption coefficient of the 3 at.% Nd-doped Lu2O3 ceramic at 807 nm reached 14 cm−1, while the emission cross section at 1079 nm was 6.5 × 10−20 cm2.  相似文献   

9.
Superfast Densification of Oxide/Oxide Ceramic Composites   总被引:1,自引:0,他引:1  
Superfast densification of ceramic composites in the pseudobinary system Al2O3-Y3Al5O12 was carried out by using a new technique called spark plasma sintering (SPS). Dense ceramic composites were obtained by heating appropriate powder mixtures to 1573 K in an SPS unit at a rate of 600 K/min. No holding time at 1573 K was applied. Scanning electron microscopy studies showed the compacted materials to contain submicrometer-sized grains of the same sizes as the precursor powder mixtures; i.e., no significant grain growth had occurred.  相似文献   

10.
The brazing of ZrO2 ceramic to 1Cr18Ni9Ti stainless steel and to itself was performed using Ag57Cu38Ti5 filler metal under a vacuum of 7 × 10-3 Pa. The effects of interlayer copper on the ceramic to stainless steel joint strength, and the brazing temperature (1073 to 1323 K) and holding time (0 to 60 min) on ceramic to ceramic joint strength were investigated. The joint strength was evaluated by shear testing. An interfacial reaction layer between the ceramic and the filler metal was found, and the reaction products were δ-TiO and γ-AgTi3. The joint strength of ZrO2 ceramic to stainless steel was improved by using a layer of copper of a suitable thickness. The brazing temperature and holding time had a strong influence on the joint strength of ceramic to ceramic, and the joint strength was mainly controlled by reaction layer thickness and the properties of the reaction products. The maximum shear strength was obtained for brazing at 1123 K for 30 min and an interfacial reaction layer thickness of ∼4.4 μm.  相似文献   

11.
The microstructures of simulated tailored ceramic forms for the Idaho Chemical Processing Plant (ICPP) high-level waste were characterized by TEM. The ceramic forms were consolidated from simulated ICPP waste calcines with either silicayttria-based or silica–lithia-based additives by hot isostatic pressing. The hot isostatically pressed ceramic waste forms are composed of cubic CaF2, monoclinic ZrO2, stabilized cubic ZrO2, tetragonal ZrSiO4, and amorphous silicate phases which can be phase separated. The phaseseparated glass is a result of phase immiscibility in the soda aluminosilicate glass to the compositions of albite and mullite.  相似文献   

12.
In this paper, we report a study on the thermal shock resistance (TSR) of MoSi2/SiCO ceramic composites obtained through controlled pyrolysis of a gel-derived precursor. MoSi2-filled gel is prepared by casting a sol obtained from MoSi2 powder dispersed in methyltriethoxysilane. The pyrolysis product can be described as a porous ceramic composite formed by a SiCO matrix with a dispersion of MoSi2 particles. Mechanical characterization is performed on bar samples by four-point bending. The TSR is investigated either by evaluating the R parameter (associated with strength, elastic modulus, and thermal expansion coefficient), or with the conventional water quenching technique. In both cases, the results suggest that the studied ceramic material displays a good TSR, which makes it a candidate for high-temperature application.  相似文献   

13.
Nanocrystalline α-Al2O3 ceramic powders have been prepared from an aqueous solution of aluminum nitrate and sucrose. Soluble Al ion-sucrose solution forms the precursor material once it is completely dehydrated. Heat treatment of the dehydrated precursors at low temperature (600°C) results in the formation of porous single-phase α-Al2O3. The precursor and heat-treated powders have been characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and BET surface area analysis. The phase-pure nanocrystalline α-Al2O3 particles had an average specific surface area of >190 m2/g, with an average pore size between 18 and 25 nm.  相似文献   

14.
The effects of thermal annealing on the structure of polycrystalline Pb(Zr0.3Ti0.7)O3 (PZT) ferroelectric thin films prepared by chemical solution deposition on Pt/TiO x electrode stacks were studied using scanning electron microscopy, transmission electron microscopy (TEM), and grazing incidence X-ray specular and diffuse reflectivity of synchrotron radiation. The stratified multilayered structure and element diffusions in the sample were characterized by TEM. Global statistical structural parameters including the density, surface or interface roughness and thickness of each layer in the samples were obtained from fitting the X-ray specular reflectivity using a homogeneous stratified multilayer model of PZT/Pt/TiO x /SiO2. The results showed that the PZT surface and PZT/Pt interface roughness changed slightly during thermal annealing in oxygen at 700°C. By contrast, the density increase of the PZT ceramic and density decrease of the Pt-bottom electrode during annealing were observed. A high density value of the PZT ceramic film after the annealing was found, up to 99.8% of the theoretical value of the corresponding bulk ceramics. The density changes of the PZT and Pt layers were further confirmed by X-ray diffuse reflectivity. The influences of the annealing treatment on the density changes of the PZT and Pt layers were attributed to the further densification of the PZT ceramic and incorporation of light elements such as Zr, Ti and O from the neighboring layers into the Pt layer, respectively, as discussed in correlation with the TEM analyses.  相似文献   

15.
Interfacial reactions of pure, lead-, and zirconium-substituted BaTiO3 ceramics with PbOB2O3 glasses were studied, with an emphasis on the effect of glass composition. Microstructures were analyzed by scanning electron microscopy and electron-probe microanalysis aided with X-ray diffractometry of powder mixtures in the system BaTiO3PbOB2O3 heated at 850°C. The interfacial microstructures were divided into two types, depending on the glass composition. The first type was characterized by precipitates of TiO2 dispersed in the glass matrix. Extended heating or limited glass volume resulted in the formation of a continuous layer of BaTi(BO3)2. The second type of microstructure was characterized by a lead-rich perovskite phase, which developed at the glass/ceramic interfacial region. Growth kinetics for this phase denied the diffusion-controlled mechanism. The substitution of lead in BaTiO3 enhanced the penetration of glass into the ceramics along the grain boundaries and developed a coreshell structure.  相似文献   

16.
A layer composed of mullite and silicate glass was caused to form on the surface of a high-purity alumina ceramic in order to enhance the strength of the material. The layer was formed by exposing the specimens above a bed of SiC platelets at 1400°C to a flowing H2 atmosphere containing ∼0.1% H2O. A reaction between the SiC platelets and the H2O in the environment resulted in the generation of SiO gas. Some of the SiO gas subsequently reacted with ambient H2O in the atmosphere, forming SiO2O "smoke" which was deposited on, and reacted with, the alumina substrate. The strength of the ceramic was significantly improved by the reaction layer, which was found to be comprised of mullite and silicate glass. The increases in strength (about 60% above that of the material in the "as-polished" condition) was attributed to the blunting of surface cracks. A similar strengthening effect was observed in samples of the mate-rial which had been ground with a 220-grit diamond abra-sive wheel (as had all of the samples) but not polished.  相似文献   

17.
Si3N4 powder compacts were infiltrated with liquid precursors which produce either Zr(Y)O2 (3 mol% Y2O3) solid solution or amorphous Si3N4 after pyrolysis at relative low temperatures and without shrinkage. Results show that cracks which occur within a thin, surface layer of the precursor during pyrolysis can extend into the powder compact. As suggested by theory, this cracking phenomenon could be avoided either by making the powder compact stronger before infiltration or by removing the thin precursor layer before pyrolysis. The mechanical properties of these materials were studied as a function of residual porosity. It was observed that crack extension occurred within the second phase produced by infiltration and pyrolysis. The second phase appeared to govern the critical stress intensity factor ( Kc ) of the material. Kc was found to be a linear function of the change in residual, relative porosity divided by the initial, relative porosity in the powder compact. Reasonable flexural strengths (∼300 MPa) could be achieved despite considerable residual porosity.  相似文献   

18.
A silica (SiO2) layer was deposited on the surface of an AlN ceramic in order to increase the strength and to prevent the high-temperature oxidation of the material. The layer was formed on the surface by exposing coupons to the atmosphere downstream of a bed of SiC powder in a flowing H2–0.1% H2O atmosphere at 1450°C. A reaction between the SiC powder and H2O in the H2 gas resulted in the generation of SiO2"smoke" in the product gas stream. Part of the SiO2 smoke was subsequently deposited on the surface of the AlN specimen to form a dense and uniform SiO2 layer. The strength of AlN was improved by about 20% apparently because of blunting of surface defects by SiO2. More importantly, the layer was very effective in protecting the AlN from the oxidation at elevated temperatures, through the inhibition of transport of oxidants to the sample surface.  相似文献   

19.
The feasibility of creating "tough surface material" using oxide-fiber-reinforced oxide matrix ceramics was studied. Al2O3 fiber/(ZrO2, Al2O3) matrix composite was used as the surface material of a Si–Ti–C–O-fiber-bonded composite. The sintering of the matrix (ZrO2 and Al2O3) of the surface composite layer (SCL) and its bonding to the fiber-bonded composite (FBC) were done simultaneously by vacuum hot pressing. A spherical indentation test demonstrated the advantage of the SCL in reducing the damage of the base FBC from an indenter, because the high fracture resistance of the surface composite layer could reduce the stress concentration by the cumulative microfracture process.  相似文献   

20.
Residual surface stresses introduced into polycrystalline Al2O3 during diamond grinding (320 grit) were examined by an X-ray direction technique commonly used for metals. Compressive stresses, estimated to be in the range 135 to 170 MPa and to extend 15 μm deep, were observed at the surface. It is believed that the compressive surface layer coincides with the plastic layer produced by the elastie/plastic interaction of the abrasive grains with the ceramic. The results are discussed with regard to the effect of the compressive layer on the extension of surface cracks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号