首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we integrate the multicarrier signaling technique and the RAKE receiver to design a DS-CDMA system with the capability to increase the data rate, mitigate the effect of correlation among the various subcarriers, and suppress partial-band interference. In the proposed system, a data sequence is serial-to-parallel converted, and multicarrier DS-CDMA is used on each of the parallel data streams. The receiver provides a RAKE for each subcarrier, and the outputs of the RAKEs are combined by a maximal-ratio combiner. We employ a correlated subcarrier and frequency-selective fading channel model to derive the average probability of error of the system and compare the results with those of both a single carrier RAKE system and a multicarrier DS-CDMA system in a frequency selective Rayleigh fading channel with an exponential multipath intensity profile, when multiple access interference and partial-band interference are present  相似文献   

2.
A generalized code acquisition scheme for direct-sequence code-division multiple-access systems with multiple antennas is proposed over frequency-selective fading channels. The proposed scheme is developed on the framework of a generalized configuration of multiple antennas and correlators. The nonconsecutive search method is generalized and extended to multiple antenna systems to exploit multipath signals in improving acquisition performance over frequency-selective fading channels. The proposed scheme also adopts a hybrid decision strategy to make effective decisions on acquisition. The mean acquisition time performance of the proposed acquisition scheme is analyzed and evaluated in frequency-selective Rayleigh-fading channels with general multipath delay profiles and spatial-fading correlations. The effects of nonconsecutive search on mean acquisition time are investigated for various channel environments, and the optimal choice of decision strategy is discussed. Furthermore, effects of various configurations of multiple antennas and correlators, decision thresholds, and correlation interval on the performance are also investigated.  相似文献   

3.
We present two code-acquisition schemes for a multicarrier direct-sequence code-division multiple-access system, one that uses equal gain combining and the other that uses selection combining. The code-acquisition performance of the two multicarrier systems, as well as that of a single-carrier system, are analyzed in both nonfading and Rayleigh fading channels under the assumption that the receiver is chip-synchronized; the effect of partial-band interference (PBI) on the performance is also included. It is demonstrated that in an additive white Gaussian noise channel, the single-carrier system has a better code-acquisition performance than both multicarrier systems. However, in a Rayleigh fading channel, the code-acquisition performance of a multicarrier system with equal gain combining is better than that of the single-carrier system, while a multicarrier system with selection combining has the same performance as the single-carrier system. Further, the presence of PBI more severely affects the code-acquisition performance of the single-carrier system than those of both multicarrier systems. Finally, the code-acquisition performance of a multicarrier system with equal gain combining is always better than that of the selection combining system  相似文献   

4.
时变频率选择性衰落信道中,针对二维扩频系统提出了一种时频码片级差分检测方法,并进行了误码率分析,同时进行了仿真验证.分析和仿真结果表明,时频码片级差分检测同时具有抵抗信道频率选择性和时间选择性衰落的能力,在选择性衰落信道中的性能优于平坦衰落信道中的性能.通过性能对比发现,时频码片级差分检测相对多载波扩频码片级差分检测能够更加有效地降低了载波间干扰对系统性能的影响.  相似文献   

5.
The focus of this paper is on the initial acquisition of a direct sequence (DS) spread-spectrum signal utilizing a purely parallel search strategy. A parallel search strategy is utilized because it reduces the acquisition time compared to either serial or partially parallel strategies. In particular, the purpose of this paper is to derive the optimal decision rule, based on the maximum-likelihood criterion, for frequency-selective fading channels. The performance of the conventional decision rule, optimized for additive white Gaussian noise and flat-fading channels, the optimal decision rule derived, and a suboptimal decision rule, also presented in this paper, are compared. It is shown that the optimal and suboptimal decision rules for Rayleigh-fading channels outperform the conventional decision rule. For Rician-fading channels, it is shown both that the optimal decision rule outperforms the conventional decision rule, and that the optimum decision rule for Rayleigh-fading channels, when implemented on a Rician-fading channel, yields approximately optimum performance  相似文献   

6.
The performance of frequency-hopping spread-spectrum systems employing noncoherent reception and transmission diversity is analyzed for frequency-selective Rayleigh fading channels. Two different types of transmission diversity systems, a fast frequency-hopping (FFH) system and a multicarrier frequency-hopping (MCFH) system, are investigated. In order to combine received signals from transmit diversity channels, the optimum diversity combining rule based on the maximum-likelihood criterion is developed. Probability of error equations are derived, and utilized to evaluate the performance of the two systems. The MCFH systems are found to outperform FFH systems when the channel delay spread is severe, while FFH systems are superior to MCFH systems when a channel varies rapidly. Furthermore, it is found that performance enhancement due to an increase of diversity order is more significant for MCFH systems than for FFH systems in frequency-selective fading channels. The effect of frequency-selective fading is also investigated in determining optimum frequency deviations of binary frequency-shift keying signals  相似文献   

7.
This letter presents an analysis of asynchronous multicarrier code-division multiple-access (MC-CDMA) systems with a guard period (GP) in the form of a cyclic prefix over frequency-selective multipath fading channels, which results in closed-form bit-error rate performance. Furthermore, it confirms that the frequency diversity of MC-CDMA systems is identical to the path diversity. The analytical approach proposed here is extended to the case without a GP. The derived analytical results show that a GP is required for MC-CDMA systems in order to mitigate not only the effect of intersymbol interference and intercarrier interference, but also the desired signal power degradation.  相似文献   

8.
We investigate the issue of pseudo noise (PN) code acquisition in single-carrier and multicarrier (MC) direct-sequence code-division multiple-access (DS-CDMA) systems, when the channel is modeled by frequency-selective Nakagami-m (1960) fading. The PN code acquisition performance of single-carrier and MC DS-CDMA systems is analyzed and compared when communicating over Nakagami-m fading channels under the hypothesis of multiple synchronous states (H/sub 1/ cells) in the uncertainty region of the PN code. In the context of MC DS-CDMA, the code acquisition performance is evaluated, when the correlator outputs of the subcarriers associated with the same phase of the local PN code replica are noncoherently combined by using equal gain combining (EGC) or selection combining (SC) schemes. The performance comparison of the above mentioned schemes shows that the code acquisition performance of the MC DS-CDMA scheme, especially when using the EGC scheme, is more robust, than that of single-carrier DS-CDMA schemes communicating over the multipath Nakagami-m fading channels encountered. However, our code acquisition performance comparison also shows that if the detection threshold was set inappropriately, the performance might be degraded, even if the channel fading becomes less severe.  相似文献   

9.
A novel acquisition scheme that utilizes multipaths to improve the acquisition performance is proposed for frequency-selective fading channels. The proposed acquisition scheme employs nonconsecutive search and joint triple-cell detection. The performance is analyzed in frequency-selective Rayleigh fading channels. Equations for the probabilities of detection and false alarm are derived, and an expression for the mean acquisition time is developed. The mean acquisition time performance of the proposed and conventional acquisition schemes is evaluated and compared. It is found that the proposed acquisition scheme significantly outperforms the conventional one. The effects of various channel parameters such as the number of resolvable paths, the shape of the multipath intensity profile (MIP) and the signal-to-interference ratio (SIR) on acquisition performance are also investigated  相似文献   

10.
Transmit antenna diversity has been exploited to develop high-performance space-time coders and simple maximum-likelihood decoders for transmissions over flat fading channels. Relying on block precoding, this paper develops generalized space-time coded multicarrier transceivers appropriate for wireless propagation over frequency-selective multipath channels. Multicarrier precoding maps the frequency-selective channel into a set of flat fading subchannels, whereas space-time encoding/decoding facilitates equalization and achieves performance gains by exploiting the diversity available with multiple transmit antennas. When channel state information is unknown at the receiver, it is acquired blindly based on a deterministic variant of the constant-modulus algorithm that exploits the structure of space-time block codes. To benchmark performance, the Cramer-Rao bound of the channel estimates is also derived. System performance is evaluated both analytically and with simulations  相似文献   

11.
In this letter, downlink multicarrier code-division multiple access (MC-CDMA) systems with maximal ratio combining (MRC) in frequency-selective Rayleigh fading channels is considered. An exact bit error rate (BER) is provided based on the characteristic function (CF) and residue calculation method. The BER performance is evaluated in the time domain instead of the frequency domain. This method does not require any assumption regarding the statistical or spectral behavior of multiple access interference (MAI).  相似文献   

12.
Error probability analysis is performed for a binary orthogonal frequency-shift-keying (FSK) receiver using fast frequency-hopped (FFH) spread-spectrum waveforms transmitted over a frequency-nonselective slowly fading channel with partial-band interference. Diversity is performed using multiple hops per data, bit. A nonlinear combination procedure referred to as self-normalization combining is used by the receiver to minimize partial-band interference effects. Diversity is found to completely negate degradation of the self-normalized receiver caused by partial-band interference and offers definite receiver performance improvement when the direct signal component is weak. The self-normalized receiver is sensitive to fading channels. For severe channel fading, the performance of a conventional noncoherent binary FSK receiver is generally either equivalent or superior to that of the self-normalized receiver  相似文献   

13.
Several standards such as IEEE 802.11a/g, IEEE 802.16, and the European Computer Manufacturers Association (ECMA) multiband orthogonal frequency division multiplexing (MB-OFDM) for high data-rate ultra-wideband employ bit-interleaved convolutionally coded multicarrier modulation over quasi-static fading channels. Motivated by the lack of appropriate error rate analysis techniques for this popular type of system and channel model, we present two novel analytical methods for bit error rate (BER) estimation of coded multicarrier systems operating over frequency-selective quasi-static channels with nonideal interleaving. In the first method, the approximate performance of the system is calculated for each realization of the channel, which is suitable for obtaining the outage BER performance (a common performance measure for, e.g., MB-OFDM systems). The second method assumes Rayleigh distributed frequency-domain subcarrier channel gains and knowledge of their correlation matrix, and can be used to directly obtain the average BER performance. Both methods are applicable to convolutionally coded interleaved multicarrier systems employing quadrature amplitude modulation, and are also able to account for narrowband interference (modeled as a sum of tone interferers). To illustrate the application of the proposed analysis, both methods are used to study the performance of a tone-interference-impaired MB-OFDM system.  相似文献   

14.
Advanced signal processing for power line communications   总被引:4,自引:0,他引:4  
In this article, signal processing techniques to combat the adverse communications environment on power lines are addressed, so as to enable reliable high speed data communications over low-voltage power distribution networks for Internet access and in-home/office networking. It is seen that multicarrier code-division multiple access, multiuser detection, and turbo decoding, having demonstrated their limit-approaching capacity in DSL and wireless communication systems, are readily applied to power line communications. In particular, it is argued that these methods can successfully mitigate the influence of the principal impairments in PLC channels: time-varying channel attenuation, multipath frequency-selective fading, multiple access interference, and background noise. Strategies to deal with the most unfavorable noise source, the impulse noise, are also discussed.  相似文献   

15.
In this paper, we study the effect of finite-power, phase-locked loop based phase noise on the bit-error-rate (BER) performance of orthogonal frequency division multiplexing (OFDM) systems in frequency-selective fading channels. It is well known the impact of phase noise on the performance of an OFDM system can be divided into a multiplicative term called common phase error (CPE) and an additive term called intercarrier interference (ICI). Based on the conditional Gaussian approximation technique, we first derive the BER formulas for BPSK, QPSK, 16-QAM, and 64-QAM modulated OFDM signals in frequency-selective Rayleigh fading channels. To further quantify the individual influence of the CPE and the ICI on system performance for different phase noise spectra, we derive the BER expressions for perfect CPE compensation cases. The analytical results obtained for frequency-selective Rayleigh fading channels are then generalized to frequency-selective Rician fading channels. Simulation results not only validate the accuracy of our analysis but also show the dependency of BERs on the shapes of phase noise spectra.  相似文献   

16.
We propose a multichannel joint detector which eliminates other user, multipath, and intercarrier interference through a decorrelating process in a multicarrier 16-QAM direct-sequence code-division multiple-access system. The performance of the proposed detector under a frequency-selective fading channel is analytically derived and compared to that of a conventional single-user detector. The symbol error ratio curve of the proposed detector does not show the error floor that is seen in the conventional detector, and the resultant performance is close to that of a multicarrier 16-QAM system without any interference.  相似文献   

17.
The performance of a double-dwell serial search technique is analyzed for cellular code-division multiple-access (CDMA) networks in the case of multiple pilot signals. A general expression for the mean acquisition time is obtained by considering the multiple H1 regions formed by the pilot signals coming from different base stations. The statistics of the demodulator output in code acquisition systems are discussed in detail for synchronous cellular CDMA networks with a focus on the nonstationarity of the interference in the forward link. The probabilities of detection and false alarm are then derived for frequency-selective Rayleigh fading environments in the case where the interference can be approximated by a stationary Gaussian noise process. Numerical evaluations are performed to examine the effects of decision thresholds, postdetection integration, fading rate, and so on, with emphasis on the case where the mobile station is located around the cell boundary  相似文献   

18.
We present the performance analysis of a fast frequency-hopped (FH) binary orthogonal frequency-shift keying acquisition receiver for communication against adverse environments. The receiver employs noncoherent, noise-normalized, matched-filtered (MF) correlation detection for rapid acquisition in the search mode. Our analysis includes four types of communication environments, namely additive white Gaussian noise (AWGN) channel, AWGN channel with partial-band noise jamming, fading channels, and fading channels with partial-band noise jamming. The considered fading channels include Nakagami-m, Rician, and Rayleigh amplitude models. Based on Beaulieu's (see ibid., vol.38, no.9, p.1463, 1990) convergent series approach, efficient analytical formulas are developed for performance evaluation. Example performance results for various environments are presented in terms of two acquisition probabilities, namely the detection probability and the false alarm probability of the noise-normalized MF detector. It is analytically shown that with a short MF correlation length and with a sufficiently large ratio of signal power to noise power the fast FH diversity combining yields noticeable performance improvement for environments with strong fading. When the MF correlation is lengthened, this improvement tends to fade away and the diversity combining results in performance loss  相似文献   

19.
The bit error rate (BER) performance of a noncoherent fast frequency-hopped binary orthogonal frequency-shift-keying (FFH/BFSK) spread spectrum noise-normalization combining receiver is evaluated in the presence of partial-band interference (PBI) and additive white Gaussian noise (AWGN) over independent frequency-nonselective slowly Nakagami-m fading channels. It is shown from the analytical results, and verified by simulation, that a higher diversity level greatly improves the worst-case performance of the noise-normalization receivers over Rayleigh or more severe fading channels, while a lower diversity level is preferred for less severe fading channels. In the former case, a full band strategy is optimal for the interferer and a partial-band strategy is more disruptive in the latter case.  相似文献   

20.
The use of differentially coherent combining is proposed to improve the performance of a double-dwell acquisition system by increasing the reliability of a decision in the verification stage. The detection and mean acquisition time performance of the acquisition scheme with the proposed combining scheme is analyzed in frequency-selective Rayleigh fading channels, and compared with that of two previously published double-dwell acquisition schemes based on long correlation intervals and noncoherent combining. It is shown that the proposed acquisition scheme outperforms the previous ones, and that the performance improvement increases as the frequency offset increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号