首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Au/Co3O4 catalysts with different morphologies (nanorods, nanopolyhedra and nanocubes) were successfully synthesized and evaluated for ethylene complete oxidation. We found that support morphology has a significant effect on catalytic activity, which is related to the exposed planes of different morphological Co3O4. HRTEM revealed the Co3O4-nanorods predominantly exposes {110} planes, while the dominant exposed planes of Co3O4-nanopolyhedra and -nanocubes are {011} and {001} planes, respectively. Compared with {011} and {001} planes, {110} planes exhibit the maximum amount of oxygen vacancies, which play a major role in ethylene oxidation. Therefore, Au/Co3O4-nanorods exhibits extraordinary catalytic activity, yielding 93.7% ethylene conversion at 0 °C.  相似文献   

2.
Shape-selective properties of octadecyltrichlorosilane-treated H-ZSM-5, abbreviated as H-ZSM-5-C18, have been observed in the hydrolysis of esters having some rings and lactones in toluene-water solvent system. The shape-selectivity for the reaction has been evaluated by the ratio of the relative rate constants in comparison with the rate constant of methyl acetate. The selectivity became higher with increase in bulkiness of the substrate. Substrates having the minimum diameter larger than 6.5 Å, significantly larger in size than the pore openings of ZSM-5, could not react in this system.  相似文献   

3.
Surface-enhanced Raman spectroscopy (SERS) is an ultra-sensitive and rapid technique that is able to significantly enhance the Raman signals of analytes absorbed on functional substrates by orders of magnitude. Recently, semiconductor-based SERS substrates have shown rapid progress due to their great cost-effectiveness, stability and biocompatibility. In this work, three types of faceted Co3O4 microcrystals with dominantly exposed {100} facets, {111} facets and co-exposed {100}-{111} facets (denoted as C-100, C-111 and C-both, respectively) are utilized as SERS substrates to detect the rhodamine 6G (R6G) molecule and nucleic acids (adenine and cytosine). C-100 exhibited the highest SERS sensitivity among these samples, and the lowest detection limits (LODs) to R6G and adenine can reach 10−7 M. First-principles density functional theory (DFT) simulations further unveiled a stronger photoinduced charge transfer (PICT) in C-100 than in C-111. This work provides new insights into the facet-dependent SERS for semiconductor materials.  相似文献   

4.
Photochemical reactions that deposit insoluble products on catalytic surfaces have been used to probe the anisotropy of the reactivity of SrTiO3 microcrystals. Both reduced and oxidized products are formed preferentially on {100} surfaces. It is proposed that the anisotropic photochemical reactivity can be explained by the electronic band structure. Because direct optical transitions for charge carriers having momentum vectors in the <100> direction overlap well with the spectral distribution of the absorbed photons, more photogenerated carriers are moving toward {100} surfaces than other surfaces and, as a result, {100} surfaces are more active. Knowledge of the electronic band structure and the spectral distribution of the light allows predictions to be made about the anisotropic reactivity of photocatalysts with other crystal structures.  相似文献   

5.
With magnesium carbonate hydroxide and nanoporous silica as the starting materials, chrysotile (Mg3Si2O5(OH)4) nanotubes were prepared by using a solvothermal method at 400C within four hours. This new method needs no strong alkali medium and the reaction time is very short. EDX analysis showed a molar ratio of 3Mg:2Si:9O of the product. Selected Area Electron Diffraction (SAED) pattern indicated that the tube axis is along [100] direction. HRTEM image showed the nanotubes were multi-walled and the distance between the two close layers was about 0.75 nm, which is very near to the distance of {001} planes. Thus, combining the results of SAED and HRTEM, we can conclude that the {001} planes of serpentine roll up along the [100] direction to form the tubular structure. The effects of various reaction conditions and the formation mechanism were also discussed.  相似文献   

6.
Phase pure V2O3 micro-crystals with a hexagonal dipyramid morphology were fabricated for the first time via a facile one-step hydrothermal method. The crystals were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). A hexagonal dipyramid structure of V2O3 enclosed by well-grown {012} facets was obtained by hydrothermally reducing VO(acac)2 precursor with N2H4·H2O at 220 °C for 48 h. The results indicated that V2O3 can be well crystallized up to micron size with distinguished facets by only one step hydrothermal treatment. The formation mechanism and morphology evolution for V2O3 micro-crystals were discussed. Based on our experiments, the V2O3 nuclei formed and grew by a phase transformation through a dissolution–recrystallization process of VOOH, and the formation of the hexagonal dipyramids was ascribed to the specific adsorption of Hacac to the {012} facets restraining the growth in the directions normal to the {012} facets. The present work provides a facile method for preparing phase pure V2O3 micro-crystals with hexagonal dipyramid morphology, which can be used as a new powder material for ceramic fabrication.  相似文献   

7.
Novel bowl-like single-crystalline BaTiO3 nanoparticles were synthesized by a simple hydrothermal method using Ba(OH)2·8H2O and TiO2 as precursors. The as-prepared products were characterized by XRD, Raman spectroscopy, SEM and TEM. The results show that the bowl-like BaTiO3 nanoparticles are single-crystalline and have a size about 100–200 nm in diameter. Local piezoresponse force measurements indicate that the BaTiO3 nanoparticles have switchable polarization at room temperature. The local effective piezoelectric coefficient d33 * d_{33}^{ * } is approximately 28 pm/V.  相似文献   

8.
A series of aluminum promoted Cu/CeO2 nanocatalysts with aluminum content in the range of 0–5wt.% were prepared by co-precipitation method and examined with respect to their catalytic performance for the water–gas shift (WGS) reaction. The catalysts were characterized by XRD, BET, H2-TPR and cyclic voltammetry (CV) techniques. The results indicate that catalytic activity increases with the aluminum content at first, but then decreases with the further increase of aluminum content. Hereinto, Cu/CeO2 catalyst doped with 1 wt.% of aluminum shows the highest catalytic activity (CO conversion reaches 84.4% at 200 °C) and thermal stability for WGS reaction. Correlation to the results from above characterization, it is found that the variation of catalytic activity is in very agreement with that of the surface area, the area of peak γ (i.e., the reduction of surface copper oxide (crystalline forms) interacted with surface oxygen vacancies on ceria), and the area of peak C2 and in cyclic voltammetry process), respectively. Enough evidence was found for the fact that the metallic copper (Cu0) interacted with surface oxygen vacancies on ceria is the active site for WGS reaction over Cu/CeO2 catalysts.  相似文献   

9.
$\begin{array}{l}{\hbox{R}^1\hbox{R}^2\hbox{CHOH}} \\ {\hbox{RCH}_2\hbox{OH} }\end{array} \dynrightarrow{Oxone}{\hbox{CH}_3\hbox{CN/H}_2\hbox{O}, 70^{\circ}\hbox{C}} \begin{array}{l}{\hbox{R}^1\hbox{R}^2\hbox{CO}} \\ {\hbox{RCOOH}} \end{array} A simple and environmentally friendly procedure for the oxidation of alcohols is presented utilizing Oxone? (2KHSO5 · KHSO4 · K2 SO4) as oxidant and polymer-supported 2-iodobenzamide as catalyst in CH3CN/H2O mixed solvents.  相似文献   

10.
This work prepared an anatase TiO2 by controlling coexposed {101} and {001} facets. The anatase TiO2 was composited with MoS2, and the photocatalytic behavior was studied. The relationship between the exposed ratio of {001} facets and the enhancement proportion by the composite was compared. An appropriate exposed ratio of {001} facets, instead of a high ratio, can cause the highest enhancement proportion for photocatalytic activity. This finding confirmed that exposed {001} facets are not the main factors for improving photocatalytic activity. Dual heterojunction was observed to form between MoS2 and anatase TiO2 with coexposed {101} and {001} facets, which is a crystal‐face heterojunction between {101} and {001} facets and a semiconductor heterojunction between MoS2 and {001} facets of TiO2. In this dual heterojunction, photo‐induced electrons in TiO2 will flow into {101} facets of TiO2, instead of MoS2, whereas the photo‐induced holes in TiO2 will flow into MoS2 to reach a high separation efficiency. This finding further revealed the elevating mechanism of constructing heterojunction based on coexposed crystal faces.  相似文献   

11.
If substantial amounts of CO2, which according to actual scenarios may in the future be captured from industrial processes and power generation, shall be utilized effectively, scalable energy efficient technologies will be required. Thus, a survey was performed to assess a large variety of applications utilizing CO2 chemically (e.g., production of synthesis-gas, methanol synthesis), biologically (e.g., CO2 as fertilizer in green houses, production of algae), or physically (enhancement of fossil fuel recovery, use as refrigerant). For each of the processes, material and energy balances were set up. Starting with pure CO2 at standard conditions, expenditure for transport and further process specific treatment were included. Based on these calculations, the avoidance of greenhouse gas emissions by applying the discussed technologies was evaluated. Based on the currently available technologies, applications for enhanced fossil fuel recovery turn out to be most attractive regarding the potential of utilizing large quantities of CO2 (total capacity > 1000 Gt CO2) and producing significant amounts of marketable products on one hand and having good energy and material balances on the other hand $ \left( {{{t_{CO_2 - emitted} } \mathord{\left/ {\vphantom {{t_{CO_2 - emitted} } {t_{CO_2 - utilized} < 0.2 - 0.4}}} \right. \kern-\nulldelimiterspace} {t_{CO_2 - utilized} < 0.2 - 0.4}}} \right) $ \left( {{{t_{CO_2 - emitted} } \mathord{\left/ {\vphantom {{t_{CO_2 - emitted} } {t_{CO_2 - utilized} < 0.2 - 0.4}}} \right. \kern-\nulldelimiterspace} {t_{CO_2 - utilized} < 0.2 - 0.4}}} \right) . Nevertheless, large scale chemical fixation of CO2 providing valuable products like fuels is worth considering, if carbon-free energy sources are used to provide the process energy and H2 being essential as a reactant in a lot of chemical processes (e.g., production of DME: $ {{t_{CO_2 - emitted} } \mathord{\left/ {\vphantom {{t_{CO_2 - emitted} } {t_{CO_2 - utilized} > 0.34}}} \right. \kern-\nulldelimiterspace} {t_{CO_2 - utilized} > 0.34}} $ {{t_{CO_2 - emitted} } \mathord{\left/ {\vphantom {{t_{CO_2 - emitted} } {t_{CO_2 - utilized} > 0.34}}} \right. \kern-\nulldelimiterspace} {t_{CO_2 - utilized} > 0.34}} ). Biological processes such as CO2 fixation using micro-algae look attractive as long as energy and CO2 balance are considered. However, the development of effective photo-bioreactors for growing algae with low requirements for footprint area is a challenge.  相似文献   

12.
The heterogeneous bulk polymerization of acrylonitrile initiated by AIBN has been studied by means of an improved dilatometric technique and a new method of analysis, where the initial reaction rate (vw)0 results from the intercept of a straight line in a \documentclass{article}\pagestyle{empty}\begin{document}$ \frac {\ln \left( 1 \hbox{---} {\rm U} \right)} {{\rm e}^{{- 0,5} {\rm k}_{\rm s}{\rm t} \hbox{---} 1}}$\end{document} versus t plot. It has been found that the initial reaction rate is proportional to the square root of the initial catalyst concentration S0. The ratio of the rate coefficients of propagation and termination\documentclass{article}\pagestyle{empty}\begin{document}$\frac { {\rm k}_{\rm a} } { {\rm k}_{ {\rm w}^{2} } } $\end{document} could be calculated from the slope of a straight line passing through the origin in a plot of (vw)0 versus \documentclass{article}\pagestyle{empty}\begin{document}$\sqrt { {\rm S}_{0} }$\end{document} and yielded a value of 280 mol 1?1.  相似文献   

13.
Two new organic–inorganic hybrid compounds [\textCu\textI ( \texten ) 2 ( \textH 2 \textO )] 2 { ( \textSiW\textVI 1 1 \textW\textV 1\textO 40 ) 2 [ \textCu\textII ( \texten ) 2 ( \textH 2 \textO )] 2 [\textCu\textII ( \texten ) 2 ] 2 }·6 \textH 2 \textO [{\text{Cu}}^{\text{I}} \left( {\text{en}} \right)_{ 2} \left( {{\text{H}}_{ 2} {\text{O}}} \right)]_{ 2} \left\{ {\left( {{\text{SiW}}^{\text{VI}}_{ 1 1} {\text{W}}^{\text{V}}_{ 1}{\text{O}}_{ 40} } \right)_{ 2} \left[ {{\text{Cu}}^{\text{II}} \left( {\text{en}} \right)_{ 2} \left( {{\text{H}}_{ 2} {\text{O}}} \right)\left] {_{ 2} } \right[{\text{Cu}}^{\text{II}} \left( {\text{en}} \right)_{ 2} } \right]_{ 2} } \right\}{\cdot}6 {\text{H}}_{ 2} {\text{O}} (1) and (H2 L)2[SiW12O40]·H2O (2) [en = ethylenediamine, L = 1,4-bis(3-pyridinecarboxamido)benzene], have been hydrothermally synthesized and characterized by IR, elemental analyses, TG analysis, and single-crystal X-ray diffraction. Structural analyses indicate that compound 1 exhibits an interesting three-dimensional(3D) cross-like supramolecular network through arrangement of a 1D organic–inorganic hybrid chain { ( \textSiW\textVI 1 1 \textW\textV 1 \textO 40 ) 2 [ \textCu\textII ( \texten ) 2 ( \textH 2 \textO )] 2 [\textCu\textII ( \texten ) 2 ] 2 } 2- . \left\{ {\left( {{\text{SiW}}^{\text{VI}}_{ 1 1} {\text{W}}^{\text{V}}_{ 1} {\text{O}}_{ 40} } \right)_{ 2} \left[ {{\text{Cu}}^{\text{II}} \left( {\text{en}} \right)_{ 2} \left( {{\text{H}}_{ 2} {\text{O}}} \right)\left] {_{ 2} } \right[{\text{Cu}}^{\text{II}} \left( {\text{en}} \right)_{ 2} } \right]_{ 2} } \right\}^{ 2- } . The compound 2 consists of protonated L ligand and [SiW12O40]4− anion. The protonated L ligands have been extended into a 2D network via hydrogen-bonding interactions. The guest [SiW12O40]4− clusters have been incorporated into the square voids of the 2D host network as templates. The electrochemical behavior and electrocatalysis of compound 2 bulk-modified carbon paste electrode (2-CPE) have been studied.  相似文献   

14.
In this work, we demonstrate a novel approach to control the photocatalytic selectivity of TiO2 though different dominant crystal facets. {101}, {111}, and {001} facets exposed nanoscale anatase TiO2 were obtained by a simple hydrothermal route with different ratio of NH4+ and F?, then a calcined progress to clear surface adsorbent atoms. Results reveal that {101} exposed TiO2 has some remain binding N with a mode of unsaturated N3c exhibits selectively photocatalytic degradation of methylene orange (MO) in a methylene blue (MB) and methyl orange (MO) mixed solution, whereas TiO2 with exposed {111} and {001} facets exhibits photocatalytic selectivity for MB. The {111} facets of anatase TiO2 exhibit a better photocatalytic selective ability than {001} facets. It confirms that the photocatalytic selectivity can be affected by different dominant crystal facets. In a deeper analysis, there are many unsaturated O2c on the surface of {001} and {111} facets, which enhances adsorbent selectivity and relevant photocatalytic activity of MB, at the same time, the unsaturated O2c on the surface of {111} facets is much more than that on the surface of {001} facets results in a better photocatalytic selectivity of {111} facets. This research hopes that developing a new strategy for photocatalytic selectivity and providing a deeper understanding of different crystal facets of TiO2.  相似文献   

15.
The influence of electrolytes, which are dissolved in the aqueous absorbent and do not react with nitrogen oxides, on the absorption kinetics of both these components was investigated experimentally. In addition to demineralized water, various salt solutions of different concentrations as well as sodium hydroxide solution were used as absorbents. The term H \documentclass{article}\pagestyle{empty}\begin{document}$ H\sqrt {k_1 D} $\end{document} for N2O4 and N2O3, which is important for the design of industrial absorbers, was determined as a function of composition and concentration of the absorbents. In the case of N2O4, the chosen measuring and evaluation methods permitted a separate determination of the rate constant k of the pseudo first order reaction and of the solubility H. The diffusion coefficient D of the gas in the absorbent can be obtained only by calculation. Experimental results showed that \documentclass{article}\pagestyle{empty}\begin{document}$(H\sqrt {k_1 D} )\,_{{\rm N}_{\rm 2} {\rm O}_{\rm 4} } $\end{document} decreases with increasing ionic strength I, however, without a clear indication of any ion-specific effects. This decrease does not appear to be caused simply by a reduction in solubility (salting out effect), or in diffusion coefficient, but at least, to the same extent, through a decrease of the rate constant k with increasing electrolyte content in the absorbent. The measurements permitted the determination of the gas-based salting out parameter for N2O4. The investigations on the absorption of N2O3 in water and in an Na2SO4 solution showed no experimentally detectable influence of dissolved salts on \documentclass{article}\pagestyle{empty}\begin{document}$(H\sqrt {k_1 D} )\,_{{\rm N}_{\rm 2} {\rm O}_{\rm 3} } $\end{document}. The numerical value of \documentclass{article}\pagestyle{empty}\begin{document}$(H\sqrt {k_1 D} )\,_{{\rm N}_{\rm 2} {\rm O}_{\rm 3} } $\end{document} is six times that of \documentclass{article}\pagestyle{empty}\begin{document}$(H\sqrt {k_1 D} )\,_{{\rm N}_{\rm 2} {\rm O}_{\rm 4} } $\end{document}.  相似文献   

16.
In order to investigate the partial electronic conduction in the high oxide ion conductor of the system Bi2O3-Y2O3 under low oxygen pressure, e.m.f. and polarization methods were employed. Although the electrolyte was decomposed when the \(P_{{\text{O}}_{\text{2}} }\) was lower than the equilibrium \(P_{{\text{O}}_{\text{2}} }\) of Bi, Bi2O3 mixture at each temperature, the ionic transport number was found to be close to unity above that \(P_{{\text{O}}_{\text{2}} }\) . The hole conductivity (σ p) and the electron conductivity (σ p) could be expressed as follows, $$\begin{gathered} \sigma _p \Omega cm = 5 \cdot 0 \times 10^2 \left( {P_{O_2 } atm^{ - 1} } \right)^{{1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-\nulldelimiterspace} 4}} \exp \left[ { - 106 kJ\left( {RT mol} \right)^{ - 1} } \right] \hfill \\ \sigma _p \Omega cm = 3 \cdot 4 \times 10^5 \left( {P_{O_2 } atm^{ - 1} } \right)^{ - {1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-\nulldelimiterspace} 4}} \exp \left[ { - 213 kJ\left( {RT mol} \right)^{ - 1} } \right] \hfill \\ \end{gathered} $$ These values were much lower than the oxide ion conductivity under ordinary oxygen pressure.  相似文献   

17.
Electronic and structural properties of antiphase boundaries in group III-V semiconductor compounds have been receiving increased attention due to the potential to integration of optically-active III-V heterostructures on silicon or germanium substrates. The formation energies of {110}, {111}, {112}, and {113} antiphase boundaries in GaAs and GaP were studied theoretically using a full-potential linearized augmented plane-wave density-functional approach. Results of the study reveal that the stoichiometric {110} boundaries are the most energetically favorable in both compounds. The specific formation energy γ of the remaining antiphase boundaries increases in the order of γ{113} ≈ γ{112} < γ{111}, which suggests {113} and {112} as possible planes for faceting and annihilation of antiphase boundaries in GaAs and GaP.  相似文献   

18.
The influence of CO2 and H2O on the activity of 4% Sr-La2O3 mimics that observed with pure La2O3, and a reversible inhibition of the rate is observed. CO2 causes a greater effect, with decreases in rate of about 65% with O2 present and 90% in its absence, while with H2O in the feed, the rate decreased around 35-40% with O2 present or absent. The influence of these two reaction products on kinetic behavior can be described by assuming competitive adsorption on the surface, incorporating adsorbed CO2 and H2O in the site balance, and using rate expressions previously proposed for this reaction over Sr-promoted La2O3. In the absence of O2, the rate expression is $$r_{N_2 } = \frac{{k'P_{{\text{NO}}} P_{{\text{CH}}_{\text{4}} } }}{{{\text{(1 + }}K_{{\text{NO}}} P_{{\text{NO}}} {\text{ + }}K_{{\text{CH}}_{\text{4}} } P_{{\text{CH}}_{\text{4}} } {\text{ + }}K_{{\text{CO}}_{\text{2}} } P_{{\text{CO}}_{\text{2}} } {\text{ + }}K_{{\text{H}}_{\text{2}} {\text{O}}} P_{{\text{H}}_{\text{2}} {\text{O}}} {\text{)}}^{\text{2}} }},$$ which yields a good fit to the experimental data and gives optimized equilibrium adsorption constants that demonstrate thermodynamic consistency. With O2 in the feed, nondifferential changes in reactant concentrations through the reactor bed were accounted for by assuming integral reactor behavior and simultaneously considering both CH4 combustion and CH4 reduction of NO, which provided the following rate law for total CH4 disappearance: $$(r_{{\text{CH}}_{\text{4}} } )_{\text{T}} = \frac{{k'_{{\text{com}}} P_{{\text{CH}}_{\text{4}} } P_{{\text{O}}_{\text{2}} }^{{\text{0}}{\text{.5}}} + k'_{{\text{NO}}} P_{{\text{NO}}} P_{{\text{CH}}_{\text{4}} } P_{{\text{O}}_{\text{2}} }^{{\text{0}}{\text{.5}}} }}{{{\text{(1 + }}K_{{\text{NO}}} P_{{\text{NO}}} {\text{ + }}K_{{\text{CH}}_{\text{4}} } P_{{\text{CH}}_{\text{4}} } {\text{ + }}K_{{\text{O}}_{\text{2}} }^{{\text{0}}{\text{.5}}} P_{{\text{O}}_{\text{2}} }^{{\text{0}}{\text{.5}}} {\text{ + }}K_{{\text{CO}}_{\text{2}} } P_{{\text{CO}}_{\text{2}} } {\text{ + }}K_{{\text{H}}_{\text{2}} {\text{O}}} P_{{\text{H}}_{\text{2}} {\text{O}}} {\text{)}}^{\text{2}} }}.$$ The second term of this expression represents N2 formation, and it again fit the experimental data well. The fitting constants in the denominator, which correspond to equilibrium adsorption constants, were not only thermodynamically consistent but also provided entropies and enthalpies of adsorption that were similar to values obtained with other La2O3-based catalysts. Apparent activation energies typically ranged from 23 to 28 kcal/mol with O2 absent and 31-36 kcal/mol with O2 in the feed. With CO2 in the feed, but no O2, the activation energy for the formation of a methyl group via interaction of CH4 with adsorbed NO was determined to be 35 kcal/mol.  相似文献   

19.
Electrochemical experiments on titanium electrodes were coupled with electron backscattered diffraction (EBSD) experiments. The substrates were thermally treated and electropolished in order to have flat and reproducible polycrystalline surfaces, leading to EBSD orientation mapping. Afterwards, the samples were anodised by a galvanostatic procedure. It was shown that electrodeposition of PbO2 from a 0.5 M Pb(NO3)2+2.5 M HNO3 solution occurs selectively on the near {0 0 0 1} grains, whereas lead electrodeposition occurs on all the grains, whatever their orientation. These results are discussed, taking into account the fact that on {0 0 0 1} grains, the oxide layers are thinner than on other grains. It was concluded that electrodeposition is observed locally on Ti/TiO2 electrodes for (i) cathodic electrodeposition of metals at low overvoltage; (ii) anodic electrodeposition of PbO2, in potentiostatic or galvanostatic conditions.  相似文献   

20.
Comparisons are made between the catalytic activities of CeO2, Al2O3 and Rh2O3 when pure, or in the case of CeO2 and Al2O3 when promoted by rhodia dispersed thereon, in respect of: (a) activity at 290 K for homomolecular oxygen isotope equilibration of an equimolar (18O2 + 16O2) probe gas, the so-called R0 process, (b) activity under T-ramp for heterophase oxygen isotope exchange between surface lattice and O2 highly enriched in 18O, which is shown to occur predominantly by single-stay exchange of both oxygen atoms of dioxygen (the so-called R2 process). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号