首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Columnar, porous, magnetron-sputtered molybdenum and tungsten films show optinum performance as AMTEC electrodes at thicknesses less than 1.0 m when used with molybdenum or nickel current collector grids. Power densities of 0.40 W cm–2 for 0.5 m molybdenum films at 1200 K and 0.35 W cm–2 for 0.5 m tungsten films at 1180 K were obtained at electrode maturity after 40–90 h. Sheet resistances of magnetron sputter deposited films on sodium beta-alumina solid electrolyte (BASE) substrates were found to increase very steeply as thickness is decreased below about 0.3–0.4 m. The a.c. impedance data for these electrodes have been interpreted in terms of contributions from the bulk BASE and the porous electrode/BASE interface. Voltage profiles of operating electrodes show that the total electrode area, of electrodes with thickness <2.0 m, is not utilized efficiently unless a fairly fine (1×1mm) current collector grid is employed.  相似文献   

2.
The work described here concerns the diffusion-convective mass transfer to flow-through and flow-by porous electrodes of nickel foam. Empirical correlations giving the product of the mass transfer coefficient and the specific surface areaa e of the material as a function of the pressure drop per unit electrode height and as a function of the grade characterizing the foam are proposed. The performance of various materials are compared in terms of vs the mean linear electrolyte flow velocity.Nomenclature a e specific surface area (per unit of total volume of electrode) (m–1) - A, B Ergun law coefficients determined in flow-by configuration - A, B Ergun law coefficients determined in flow-through configurationA, A (Pa m–3 s2);B, B (Pa m2 s–1) - C E entering concentration of ferricyanide ions (mole m–3) - D molecular diffusion coefficient (m2 s–1) - F Faraday number (C mol–1) - G grade of the foams - I L limiting current (A) - mean mass transfer coefficient (m s–1) - n number of stacked foam sheets in the electrode - P/H pressure drop per unit of height (Pa m–1) - Q v volumetric electrolyte flow rate (m3 s–1) - Re Reynolds number - Sc Schmidt number - Sh Sherwood number - T mean tortuosity of the foam pores - mean electrolyte velocity (m s–1) - V R electrode volume (m3) - X conversion - dynamic viscosity (kg m–1 s–1) - v number of electrons in the electrochemical reaction - v kinematic viscosity (m2 s–1)  相似文献   

3.
The potentiometric behaviour of the hydrogen electrodes (Pt or Au) H2O-H2, OHhas been investigated in molten (Na0·5, K0·5)NO3 at 503 K. In both cases the potential of the indifferent electrode could be expressed by the general equation [H2O]/[H2] [OH] which is different from the one expected on the basis of a Nernstian behaviour of the theoretical overall system 2H2O+2e=H2+2OH.The experimental findings are discussed in terms of mechanistic models involving the actual electrode surface and the standard potential for the theoretical (reversible) hydrogen electrode is calculated: =–·0V(versus Ag/Ag+ 0·07 M).  相似文献   

4.
This paper deals with the characterization of three nickel foams for use as materials for flow-through or flow-by porous electrodes. Optical and scanning electron microscope observations were used to examine the pore size distribution. The overall, apparent electrical resistivity of the reticulated skeleton was measured. The BET method and the liquid permeametry method were used to determine the specific surface area, the values of which are compared with those known for other materials.Nomenclature a e specific surface area (per unit of total volume) (m–1) - a s specific surface area (per unit of solid volume) (m–1) - (a e)BET specific surface area determined by the BET method (m–1) - (a e)Ergun specific surface area determined by pressure drop measurements (m–1) - mean pore diameter (m) - mean pore diameter determined by optical microscopy (m) - mean pore diameter using Ergun equation (m) - e thickness of the skeleton element of the foam (m) - G grade of the foam (number of pores per inch) - P/H pressure drop per unit height of the foam (Pa m–1) - r electrical resistivity ( m) - R h hydraulic pore radius (m) - T tortuosity - mean liquid velocity (m s–1) Greek symbols mean porosity - circularity factor - dynamic viscosity (kg m–1 s–1) - liquid density (kg m–3) - pore diameter size dispersion  相似文献   

5.
Oxygen reduction on bright platinum in concentrated H3PO4 has been investigated with the rotating disc electrochemical technique at temperatures from 25 to 250° C and oxygen pressures up to 1.77 MPa. Cyclic voltammetry has been employed to study the anodic film formed on platinum in concentrated H3PO4 and the possible electroreduction of H3PO4 on platinum. The apparent transfer coefficient for the oxygen reduction has been found to be approximately proportional to temperature rather than independent of temperature. Such behaviour is difficult to reconcile with accepted theories for the effect of electrode potential on the energy barriers for electrode processes. It is of importance to establish an understanding of this phenomenon. Possible factors which can contribute to the temperature dependence of the transfer coefficient but which would not necessarily result in a direct proportionality to temperature include potential dependent adsorption of solution phase species, restructuring of the solution in the compact layer, proton and electron tunnelling, a shift in rate-determining step, changes in the symmetry of the potential energy barrier, penetration of the electric field into the electrode phase, insufficient correction for ohmic losses, and impurity effects.Nomenclature transfer coefficient - symmetry factor - temperature independent component of - stoichiometric number - rotation rate (r.p.m.) - a,c constant and temperature coefficient in Equation 4 (no unit and K–1, respectively) - B slope of Koutecky-Levich plot (mA cm–2 (r.p.m.)1/2) - b Tafel slope (V dec.–1) - E potential (V) - F Faraday (C mol–1) - i current density (A cm–2) - i L diffusion limiting current density (A cm–2) - K temperature independent component of Tafel slope (V dec–1.) - R gas constant (J mol–1 K–1) - T temperature (K) - n number of electrons - standard free energy of activation for forward process (J mol–1) - standard enthalpy of activation for forward process (J mol–1) - standard entropy of activation for forward process (J mol–1 K–1) This paper is dedicated to Professor Brian E. Conway on the occasion of his 65th birthday, and in recognition of his outstanding contribution to electrochemistry.  相似文献   

6.
An attractive way of determining the electrode kinetics of very fast dissolution reactions is that of measuring the corrosion potential in flowing solutions. This study analyses a critical aspect of the corrosion potential method, i.e., the effect of nonuniform corrosion distribution, which is very common in flow systems. The analysis is then applied to experimental data for zinc dissolution by dissolved bromine, obtained at a rotating hemispherical electrode (RHE). It is shown that in this case the current distribution effect is minor. However, the results also indicate that the kinetics of this corrosion system are not of the classical Butler-Volmer type. This is explained by the presence of a chemical reaction path in parallel with the electrochemical path. This unconventional corrosion mechanism is verified by a set of experiments in which zones of zinc deposition and dissolution at a RHE are identified in quantitative agreement with model predictions. The practical implications for the design of zinc/bromine batteries are discussed.Notation C i concentration of species i (mol cm–3) - D ` diffusivity of species i (cm2 s–1) - F Faraday constant - i j current density of species j (A cm–2) - i 0 b exchange current density referenced at bulk concentration (A cm–2) - J , inverseWa number - N - n number of electrons transferred for every dissolved metal atom - P m Legendre polynomial of orderm - r 0 radius of dise, sphere, or hemisphere - s stoichiometric constant - t + transference number of metal ion - V corr corrosion overpotential (V) Greek letters anodic transfer coefficient of Reaction 21b - a anodic transfer coefficient of metal dissolution - c cathodic transfer coefficient of metal dissolution - anodic transfer coefficient of zinc dissolution - velocity derivative at the electrode surface - (x) incomplete Gamma function - , exchange reaction order ofM +n - , inverseWa number - a activation overpotential (V) - c concentration overpotential (V) - polar angle (measured from the pole) (rad) - k solution conductivity (–1 cm–1) - kinematic viscosity (cm2 s–1) - 0 solution potential at the electrode surface (V) - rotation rate (s–1) - * indicates dimensionless quantities  相似文献   

7.
A new process for removal of sulphur dioxide from waste gases is proposed consisting of both electrochemical and catalytic sulphur dioxide oxidation. In the catalytic step a part of the sulphur dioxide is oxidized by oxygen on copper producing sulphuric acid and copper sulphate. The other part is oxidized electrochemically on graphite. The cathodic reaction of this electrolysis is used for recovering the copper dissolved in the catalytic step. The basic reactions of this process have been studied experimentally in detail. It has been shown that sulphur dioxide can be electrochemically oxidized on carbon electrodes to sulphuric acid with high current efficiency. The reaction rate of the electrochemical copper deposition is increased by dissolved sulphur dioxide in the electrolyte. The catalytic oxidation of sulphur dioxide on copper has been investigated for different sulphur dioxide concentrations and temperatures. The ratio of the reaction products, sulphuric acid and copper sulphate, varies over a wide range depending on the experimental conditions.Nomenclature SO2 concentration (gas phase) (vol % SO2) - SO2 concentration (electrolyte) (g l–1) - E potential vs saturated calomel electrode (V) - E s specific energy consumption (W g–1 SO2) - F Faraday constant (A s–1 mol–1) - i current density (mA cm–2) - molecular weight (g mol–1) - T temperature (° C) - U c cell voltage (V) - v e number of electrons being transferred - space-time yield of SO2-oxidation (g SO2 h–1 dm–3) - cu space-time yield of Cu-corrosion (g Cu h–1 dm–3) - ratio - fractional conversion of SO2 - current efficiency for SO2 oxidation  相似文献   

8.
Due to the presence of gas bubbles on the electrode surface and in the interelectrode gap during water electrolysis, the ohmic resistance in the cell increases. The main aim of this investigation is to obtain insight into the effect of the gas void distribution on the ohmic resistance in the electrolysis cell. The gas void distribution perpendicular to the electrode surface has been determined at various current densities, solution flow velocities and heights in the cell, taking high speed motion pictures. From these measurements it follows that two bubble layers can be distinguished. The current density distribution and the ohmic resistance in the electrolysis cell have been determined using a segmented nickel electrode. The current density decreases at increasing height in the cell. The effect is more pronounced at low solution flow velocities and high current densities. A new model to calculate the ohmic resistance in the cell is proposed.Nomenclature A l electrolyte area (m2) - c constant (–) - d wm distance between the working electrode and the diaphragm resp. the tip of the Luggin capillary (m) - E voltage of an operating cell (V) - f gas void fraction (–) - F Faraday constant (C/mol) - f 0 gas void fraction at the electrode surface (–) - f b gas void fraction in the bulk electrolyte (–) - h height from the bottom of the working electrode (m) - h r reference height (= 1 cm) (m) - H total height of the electrode (m) - i current density (A m–2) - i av average current density (A m–2) - i r reference current density (= 1 kA m–2) (A m–2) - R resistance () - R specific resistance (m) - R unit surface resistance (m2) - R 1 resistance of the first bubble layer () - R 2 resistance of the second bubble layer () - R cell ohmic resistance in the cell () - R b bubble radius (m) - s l degree of screening by bubbles in the electrolyte (–) - l liquid flow velocity (m s–1) - 1, r reference liquid flow velocity (= l m s–1) (m s–1) - V M molar gas volume (m3 mol–1) - w width of the electrode (m) - x distance from the electrode surface (m) - thickness of the bubble layer adjacent to the electrode (m) - number of bubbles generated per unit surface area and unit time (m–2 s–1) Paper presented at the International Meeting on Electrolytic Bubbles organised by the Electrochemical Technology Group of the Society of Chemical Industry, and held at Imperial College, London, 13–14 September 1984.  相似文献   

9.
A FMO1-LC parallel plate, laboratory electrochemical reactor has been modified by the incorporation of stationary, flow-by, three-dimensional electrodes which fill an electrolyte compartment. The performance of several electrode configurations including stacked nets, stacked expanded metal grids and a metal foam (all nickel) is compared by (i) determining the limiting currents for a mass transport controlled reaction, the reduction of ferricyanide in 1 m KOH and (ii) measuring the limiting currents for a kinetically controlled reaction, the oxidation of alcohols in aqueous base. It is shown that the combination of the data may be used to estimate the mass transfer coefficient, L, and the specific electrode area, A e, separately. It is also confirmed that the use of three dimensional electrodes leads to an increase in cell current by a factor up to one hundred. Finally, it is also shown that the FM01-LC reactor fitted with a nickel foam anode allows a convenient laboratory conversion of alcohols to carboxylic acids; these reactions are of synthetic interest but their application has previously been restricted by the low rate of conversion at planar nickel anodes.Nomenclature A e electrode area per unit electrode volume (m2m–3) - c bulk concentration of reactant (mol m–3) - E electrode potential vs SCE (V) - E 1/2 half wave potential (V) - F Faraday constant (96 485 C mol–1) - I current (A) - IL limiting current (A) - j L limiting current density (A m–2) - L mass transfer coefficient (m s–1) - n number of electrons transferred - p empirical constant in Equation 2 - P pressure drop over reactor (Pa) - R resistance between the tip of the Luggin capillary and the electrode surface () - q velocity exponent in Equation 2 - (interstitial) linear flow rate of electrolyte (ms–1) - V e volume of electrode (m3)  相似文献   

10.
The feasibility of the electrochemical machining (ECM) of pure TiC, ZrC, TiB2 and ZrB2 has been established. In addition, the ECM behaviour of a cemented TiC/10% Ni composite has been investigated and compared to that of its components, TiC and nickel. ECM was carried out in 2M KNO3 and in 3 M NaCl at applied voltages of 10–31 V and current densities of 15–115 A cm–2. Post-ECM surface studies on the TiC/Ni composite showed preferential dissolution of the TiC phase during machining.Nomenclature E 0 thermodynamic equilibrium potential (V) - F Faraday's constant (96 500 Coul mol–1) - toolpiece feed rate (cm s–1 or mm min–1) - I current (A) - i current density (A cm–2) - k electrolyte conductivity (–1 cm–1) - l interelectrode gap (mm) - mass removal rate (g s–1 or g min–1) - M formula weight (g mol–1) - Q electrolyte flow rate (l min–1) - t electrolyte temperature (°C) - V applied voltage (V) - V IR ohmic drop through electrolyte (V) - z apparent valence of dissolution (eq mol–1) - i overvoltages (V) - density of refractory materials (g cm–3)  相似文献   

11.
In molten carbonate fuel cells (MCFC), the wettability of the electrode and the electrolyte distribution are very important factors influencing the active reaction area. We have observed the molten carbonate behaviour directly on the cathode (porous NiO) and the electrolyte plate (LiAlO2) under various gas conditions and at controlled potentials using an environmental scanning electron microscope (ESEM) equipped with a hot stage. We estimated the liquid electrolyte distribution in the cathode and measured the contact angles on NiO and LiAlO2 in the electrolyte. Moreover, the electrolyte movement in the reaction CO2 + O2 + 2e = CO3 2– was observed on the surface of the porous NiO in a CO2/O2 atmosphere. The reaction CO3 2– + 2e = CO + 2 O2– of the gas generation was observed in a H2O atmosphere. The active reaction points on the electrode are the areas where the electrolyte film is thin.  相似文献   

12.
Many electrochemical processes suffer in varying degrees from mass transfer limitations. These limitations may require operation at considerably less than economic optimum current densities. Mass transfer to a surface may be considerably enhanced by insertion of turbulence promoters in the fluid flow path near the affected surface.An instrument was developed to measure local current densities in the hydrodynamically very difficult region near the turbulence promoter. A general method for the relative evaluation of hydrodynamic conditions has been developed. Generalization of the data permits optimization of hydrodynamic cell design using the promoter shapes investigated.

Notation

Symbols A Coefficient for cell power costs, $ m2 (As)–1 - A c Cell area, m2 - a Constant in Equation 4 - B Coefficient for area-proportional costs, $ A (m2 s)–1 - C Coefficient for pumping power costs, $ A (m2 s)–1 - C b Bulk concentration, kg mol m–3 - C bi Inlet bulk concentration, kg mol m–3 - C e Energy cost, $ (Ws)–1 - C i Interfacial concentration, kg mol m–3 - ¯C s Amortized area cost, $ (m2 s)–1 - D Current—density-insensitive costs, $ s–1 - D e Equivalent diameter, m - D Diffusion constant, m2 s–1 - e Current efficiency - F d Cell feed rate, m3 s–1 - F 96.5×106 A s kg eq–1 - g Channel width, m - h Channel height, m - i Current density, A m–2 - i opt Economic optimum current density, A m–2 - K Total costs of running cell, $ s–1 - (K–D)ideal Total sensitive costs under hydrodynamically ideal conditions, $ s–1 - k c Convective mass transfer coefficient, m s–1 - L Total length of flow path, m - l Promoter spacing, m - N Mass flow rate to surface due to convection, kg mol m2 s–1 - n e Number of electrons transferred in electrode reaction - P c Power required by cell, W - P/L Average pressure gradient in channel, N m–3 - R av Effective cell resistance, m2 - S Open channel cross-section, m2 - S 0 Minimum channel cross-section at promoter, m2 - s i Stoichiometric coefficient of species i - t i Transport number of species i in solution - ¯t i Effective tranport number of species at polarized surface - V Average fluid velocity, m s–1 - x Distance from inception of concentration disturbance, m - 1 Electrical power conversion efficiency - 2 Pumping power conversion efficiency - Solution viscosity, kg (m s)–1 - Solution density, kg m–3 Dimemionless groups Fanning friction factor - Reynolds number - R h/g Channel aspect ratio - D e/l Promoter frequency - S/S 0 Contraction coefficient - Sherwood number - Degree of reaction - Dimensionless total sensitive - Dimensionless current density - Energy cost ratio  相似文献   

13.
This paper describes the cylindrical agglomerate model for oxygen/alkali gas diffusion electrodes fabricated from platinum, PTFE and porous nickel. Corrections for the increase in hydroxyl ion concentration with increasing current density have been made to the original model of Brown and Horve. Changes in performance by variation of the bulk structural parameters, e.g. agglomerate radius, porosity and tortuosity, have been studied. Theoretical modes of electrode decay have been explored.List of symbols Transfer coefficient - C Concentration of O2 in elec trolyte mol cm–3 - C i Concentration of O2 atr = R mol cm–3 - C o Concentration of O2 in electrolyte atr = mol cm–3 - Diffusion coefficient of O2 in KOH cm2 sec–1 - Film thickness cm - E Overpotential of the electrode V - F Faraday's constant - i Electrode current density A cm–2 - i a Current per agglomerate A - I 1(Z) First order Bessel function - I 0(Z) Zero order Bessel function - j Local current density A cm–2 - j o Exchange current density A cm–2 - L Agglomerate length (catalyst thickness) cm - N Number of electrons in rate determining step - N a Number of agglomerates per cm2 of electrode - Potential drop along ag glomerate V - L Potential drop at La V - r Radial direction - R Radius of agglomerate cm - R o Gas constant - Density of platinum g cm–3 - S g Surface area per gram cm2 g–1 - Solubility coefficient of O2 mol cm–3 - m Electrolyte conductivity (ohm cm)–1 - T Absolute temperature °K - a Axial tortuosity - Porosity of platinum in the agglomerate - r Aadial tortuosity of the agglomerate - W Catalyst loading g cm–2 - x Axial direction  相似文献   

14.
It is known that during electrodeposition or dissolution electrode shape change depends on the local current density (Faraday's law in differential form). Assuming that concentration gradients in the bulk of the solution may be neglected, the current distribution in an electrochemical system can be modelled by a Laplace equation (describing charge transport) with nonlinear boundary conditions caused by activation and concentration overpotentials on the electrodes. To solve this numerical problem, an Euler scheme is used for the integration of Faraday's law with respect to time and the field equation is discretized using the boundary element method (BEM). In this way, and by means of a specially developed electrode growth algorithm, it is possible to simulate electrodeposition or electrode dissolution. In particular, attention is paid to electrode variation in the vicinity of singularities. It is pointed out that the angle of incidence between an electrode and an adjacent insulator becomes right (/2). This is confirmed by several experiments.List of symbols x i coordinates of a point i belonging to a boundary (m) - t time (s) - h thickness variation at a point belonging to an electrode (m) - M molecular weight (kgmol–1) - m specific weight (kgm–3) - z charge of an ion (C) - F Faraday's constant (C mol–1) - R a2 impedance of the linearized activation overvoltage on cathode (S2 cm–2) - efficiency of the reaction - electric conductivity (–1 m–1) - U electric potential (V) - rate of mechanical displacement of a point (m s–1) - V applied potential on an electrode (V) - W Wagner number defined as the ratio of the mean impedance of the reaction and the mean ohmic resistance of the cell given by L/ with L a characteristic length of the cell. - overvoltage (V) - 1 overvoltage on anode (V) - 2 overvoltage on cathode (V)  相似文献   

15.
The codeposition kinetics of copper and nickel alloys in complexing citrate ammonia electrolytes has been investigated by means of polarization and electrochemical impedance techniques. It is confirmed that the two-step discharge of the complexed cupric species Cu(II)Cit is diffusion-controlled during the alloy deposition, resulting in an increase in the nickel content of the alloy with electrode polarization. Impedance spectra are also consistent with a two-step discharge of Ni(II) cations involving an intermediate adsorbate, Ni(I)ads, originating from the reversible first step. A reaction model is developed for the parallel discharge of Cu(II)Cit and Ni(II) in which the reactions for nickel deposition are catalysed by active sites permanently renewed at the surface of the growing alloy. The surface density of these sites, slowly nucleated from Ni(I)ads and included in the deposit, varies with the electrode polarization, thus generating a low-frequency feature specific of Cu–Ni codeposition. This reaction model reproduces to a reasonable extent the potential dependence of the partial current densities for nickel and copper discharge, the current dependence of the alloy nickel content and also most of the experimental relaxation processes observed on impedance spectra.Nomenclature b 1,b 2,b 3,b 3 b 4,b 5,b 7 Tafel coefficients (V–1) - C concentration of Cu(II)Cit at distancex (mol cm–3) - [Cu(II)] bulk concentration of Cu(II)Cit (mol cm–3) - C 0 concentration of Cu(II)Cit atx=0 (mol cm–3) - C* concentration of Cu(I)Cit atx=0 (mol cm–3) - C 0, C* variations inC 0,C* due to E - (Cu), (Ni) molecular weights (g) - C dl double layer capacitance (F cm–2) - D diffusion coefficient of Cu(II)Cit (cm2 s–1) - E electrode potential (V) - f frequency (s–1) - F Faraday (constant 96 487 A s mol–1) - g interaction factor between adsorbates - i,i Cu,i Ni current densities (A cm–2) - Im(Z) imaginary part ofZ - j (–1)1/2 - k mass transfer coefficients (cm s–1) - K 1,K 3 rate constants (cm s–1) - K 2 rate constants (s–1) - K 3,K 4,K 5,K 6,K 7 rate constants (cm–2 s–1) - [Ni(II)] bulk concentration of NiSO4 (mol cm–3) - R t charge transfer resistance ( cm2) - Re(Z) real part ofZ - t time (s) - x distance from the electrode (cm) - Z F faradaic impedance ( cm2) - Z electrode impedance - maximal surface concentration of Ni(I)ads intermediates (mol cm–1) - nickel content in the deposited alloy (wt %) - thickness of Nernst diffusion layer (cm) - 1 electrode coverage by adsorbed Ni(I)ads intermediate - 2 electrode coverage by active sites - 1, 2 variations in 1, 2 die to E - * =K 2 –1 (s) - d diffusion time constant (s) - 1 time constant relative to 1 (s) - 2 time constant relative to 2 (s) - angular frequency (rad s–1) - electrode rotation speed (rev min–1)  相似文献   

16.
The rate of electrolytic reduction of hexavalent chromium from acidic solution at a hydrogen-evolving rotating cylinder lead cathode was studied under conditions of different current densities, Cr6+ concentrations and rotation speeds. The rate of the reaction was found to follow a first order rate equation. The specific reaction rate constant was found to increase with increasing rotation speed until a limiting value was reached with further increase in rotation speed. Mechanistic study of the reaction has shown that at relatively low rotation speeds the reduction of Cr6+ is partially diffusion controlled, at higher speeds the reaction becomes chemically controlled. The limiting specific reaction rate constant was related to the operating current density by the equationK=0.044i 1.385. The current efficiency of Cr6+-reduction was measured as a function of current density, initial Cr6+ concentration and rotation speed. Possible practical applications are discussed.Nomenclature A electrode area (cm2) - a, b constants in Equations 5 and 13, respectively - C bulk concentration of Cr6+ at timet(M) - C o initial concentration of Cr6+ (M) - C i interfacial concentration of Cr6+ (M) - d cylinder diameter (cm) - D diffusivity of Cr6+ (cm2 s–1) - e o standard electrode potential (V) - F Faraday's constant (96 487 C) - current consumed in hydrogen discharge (A) - i current density (A cm–2) - I cell current (A) - K l mass transfer coefficient (cm s–1) - K r mass transfer coefficient due to cylinder rotation (cm s–1) - K o natural convection mass transfer coefficient (cm s–1) - K g mass transfer coefficient due to hydrogen stirring (cm s–1) - K 2 specific reaction rate constant (cm s–1) - K overall rate constant (cm s–1) - m theoretical amount of Cr6+ reduced during electrolysis (g) - P gas pressure (atm) - R gas constant (atm cm3 mol–1 K–1) - T temperature (K) - t time (s) - V linear speed of the rotating cylinder (cm s–1) - hydrogen discharge rate (cm3 cm–2 s–1) - V s solution volume (cm3) - z electrochemical equivalent (g C–1) - Z number of electrons involved in the reaction - Re Reynolds number (Vd/v) - Sh Sherwood number (K r d/D) - Sc Schmidt number (v/D) - rotation speed (r.p.m.) - kinematic viscosity (cm2 s–1)  相似文献   

17.
Electroless copper deposition using Co(II)-ethylenediamine (En) complexes as reducing agents was investigated in 0.4–1.2 M En solutions at 50 and 70 °C. There is a complicated dependence of the process rate on pH, En concentration and temperature. A copper deposition rate up to 6 m h–1 (50–70 °C) in relatively stable solutions (pH 6) can be achieved. The stoichiometry of the Cu(II) reduction at pH 6–7 corresponds to the reaction:
The correlation between the rate of the copper deposition on the catalytic surface and the concentration of the complex species in the solution was found.  相似文献   

18.
The electrochemical reduction of nickel ions from a dilute solution has been carried out in a gas diffusion electrode packed bed electrode cell (GBC). Particle size and electrode configuration have been found to have a significant influence on the reduction process. Electrodes with a high porosity and large pores have been found to be the best for nickel deposition. The nickel current efficiency, Ni, is reported to be dependent on the current density, volumetric flow rate, nickel and boric acid concentration, and the pH. The fall in the nickel current efficiency is caused by an increase in electrode surface pH above a certain level, caused by either high bulk solution pH or high current density, leading to possibly formation of Ni(OH)2. It has been found that under conditions of exclusively metallic nickel deposition Ni/(1–Ni) is proportional to i0.69,Q10.52,CNi0.67,CBA–0.19 and pH1.0.  相似文献   

19.
The potential (or current) fluctuations observed under current (or potential) control during gas evolution were analysed by spectral analysis. The power spectral densities (psd) of these fluctuations were measured for hydrogen and oxygen evolution in acid and alkaline solutions at a platinum disk electrode of small diameter. Using a theoretical model, some parameters of the gas evolution were derived from the measured psd of the potential fluctuations, such as the average number of detached bubbles per time unit, the average radius of the detached bubbles and the gas evolution efficiency. The influence of the electrolysis current on these parameters was also investigated. The results of this first attempt at parameter derivation are discussed.Nomenclature b Tafel coefficient (V–1), Equation 46 - C electrode double layer capacity (F) - e gas evolution efficiency (%) - f frequency (Hz) - f p frequency of the peak in the psd v and i (Hz) - F Faraday constant, 96 487 C mol–1 - l electrolysis current (A) - J electrolysis current density (mA cm–2) - k slope of the linear potential increase (V s–1), see Fig. 1 - n number of electrons involved in the reaction to form one molecule of the dissolved gas - r b radius of a spherical glass ball (m) - r e radius of the disk electrode (m) - R e electrolyte resistance () - R p polarization resistance () - R t charge transfer resistance () - u 1 distribution function of the time intervals between two successive bubble departures (s–1) - v g mean volume of gas evolved per unit time (m3 s–1) - v t gas equivalent volume produced in molecular form per unit time (m3 s–1) - V 0 gas molar volume, 24.5×10–3 m3 at 298 K - x 0 time pseudoperiod of bubbles evolution (s) - Z electrode electrochemical impedance () Greek characters e dimensionless proportional factor (Equation 19) - slope of log /logJ and loge/logJ curves - number of bubbles evolved per unit time (s–1) - a activation overpotential (V) - ci concentration overpotential of reacting ionic species (V) - cs concentration overpotential of dissolved molecular gas (V) - ohm ohmic overpotential (V) - t total overpotential (V) - v parameter characteristic of the gas evolution pseudoperiodicity, Equation 13 (s–1) - time constant of the double layer capacity change (s) - v power spectral density (psd) of the potential fluctuations (V2 Hz–1) - i power spectral density (psd) of the current fluctuations (A2 Hz–1) Special symbols spatial average of the overpotential j over the electrode surface - time averaged value of - j fluctuation of around - <> mean value of the total overpotential jump amplitude due to a bubble departure - <I> mean value of the current jump amplitude due to a bubble departure Paper presented at the 2nd International Symposium on Electrolytic Bubbles organized jointly by the Electrochemical Technology Group of the Society of Chemical Industry and the Electrochemistry Group of the Royal Society of Chemistry and held at Imperial College, London, 31st May and 1st June 1988.  相似文献   

20.
A mathematical model is presented for the optimization of the hydrogen-chlorine energy storage system. Numerical calculations have been made for a 20 MW plant being operated with a cycle of 10 h charge and 10h discharge. Optimal operating parameters, such as electrolyte concentration, cell temperature and current densities, are determined to minimize the investment of capital equipment.Nomenclature A ex design heat transfer area of heat exchanger (m2) - a F electrode area (m2) - heat capacity of liquid chlorine (J kg–1K–1) - heat capacity of hydrogen gas at constant volume (J kg–1 K–1) - c p,hcl heat capacity of aqueous HCl (J kg–1 K–1) - C $acid cost coefficient of HCl/Cl2 storage ($ m–1.4) - C $ex cost coefficient of heat exchanger ($ m–1.9) - C $F cost coefficient of cell stack ($ m–2) - cost coefficient of H2 storage ($ m–1.6) - C $j cost coefficient of equipmentj ($/unit capacity) - C $pipe cost coefficient of pipe ($ m–1) - C $pump cost coefficient of pump ($ J–0.98 s–0.98) - E cell voltage (V) - F Faraday constant (9.65 × 107 C kg-equiv–1) - F j design capacity of equipmentj (unit capacity) - G D design electrolyte flow rate (m3 h–1) - heat of formation of liquid chlorine (J kg-mol–1 C12) - H f 0 ,HCl heat of formation of aqueous HCl (J kg-mol–1HCl) - H m total mechanical energy losses (J) - I total current flow through cell (A) - i operating current density of cell stack (A m–2) - L length of pipeline (m) - N number of parallel pipelines - nHCl change in the amount of HCl (kg-mole) - P pressure of HCl/Cl2 storage (kPa) - p 1 H2 storage pressure at the beginning of charge (kPa) - p 2 H2 storage pressure at the end of charge (kPa) - –Q ex heat removed through the heat exchanger (J) - R universal gas constant (8314 J kg-mol–1 K–1) - the solubility of chlorine in aqueous HCl (kg-mole Cl2 m–3 solution) - T electrolyte temperature (K) - T 2 electrolyte temperature at the end of charge (K) - T max maximum electrolyte temperature (K) - T min minimum electrolyte temperature (K) - t final time (h) - t ex the length of time for the heat exchanger operation (h) - Uit ex overall heat transfer coefficient (J h–1 m–2 K–1) - V acid volume of HCl/Cl2 storage (m3) - } volume of H2 storage (m3) - v design linear velocity of electrolyte (m s–1) - amount of liquid chloride at timet (kg) - amount of liquid chlorine at timet 0 (kg) - w hcl amount of aqueous HCl solution at timet (kg) - W p design brake power of pump (J s–1) - X electrolyte concentration of HCl at timet (wt fraction) - X f electrolyte concentration of HCl at the end of charge (wt fraction) - X i electrolyte concentration of HCl at the beginning of charge (wt fraction) - X 0 electrolyte concentration of HCl at timet 0 (wt fraction) - Y objective function to be minimized ($ kW–1 h–1) - j the scale-up exponent of equipmentj - overall electric-to-electric efficiency (%) - acid safety factor of HCl/Cl2 storage - fractional excess of liquid chlorine - p pump efficiency - average density of HCl solution over the discharge period (kg m–3)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号