首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High density (Na1−xKx)NbO3 (x = 0.5, 0.6, and 0.7) ceramics were successfully prepared by spark-plasma-sintering (SPS) method. The dielectric and piezoelectric properties of the SPS samples were investigated and compared to that of hot-pressed samples. It is found that, the SPS-sintered (Na1−xKx)NbO3 samples show higher room temperature dielectric constant, higher coercive fields, lower remnant polarizations and lower electromechanical coefficients than that of the hot-pressed (Na1−xKx)NbO3 samples. The dielectric and piezoelectric property differences between the SPS-sintered and hot-pressed samples have been attributed to grain size effects.  相似文献   

2.
Micromachining techniques, in combination with low temperature ceramic composite sol-gel processing, have been used to fabricate annular array thickness-mode piezoelectric micro ultrasonic transducers (Tm-pMUTs). The processing techniques of low temperature (710 degrees C) composite sol-gel ceramic (sol + ceramic powder) deposition and wet etching were used to deposit and structure 27-microm thick lead zirconate titanate (PZT) films on silicon substrates to produce annular array Tm-pMUTs. Using these techniques, high quality PZT materials with near bulk permittivity have been obtained. The Tm-pMUT devices were shown to resonate at approximately 60 MHz in air and 50 MHz in water. From resonance measurements k(t) values ranging between 0.2 and 0.47 have been calculated and shown to depend on the level of porosity within the film. Lower values of kt were observed for films with higher levels of porosity, which was attributed to the relative decrease in the effective piezoelectric coefficient epsilon(33) with respect to stiffness and permittivity as a function of increasing porosity. This paper presents the successful micro-fabrication of a Tm-pMUT device and discusses the optimization of the poling conditions and effect of PZT microstructure on the coupling coefficient k(t). Pulse echo measurements in water, showing a -6 dB center frequency of 53 MHz and 47% -6 dB bandwidth, using a target 15 mm away from the transducer, have been included to demonstrate successful operation of the device. Full analysis of these results will be conducted in later publications.  相似文献   

3.
Solid freeform fabrication of piezoelectric sensors and actuators   总被引:3,自引:0,他引:3  
The last two decades have witnessed the proliferation piezoelectric composite transducers for an array of sensor and actuator applications. In this article, a concise summary of the major methods used in composite making, with special emphasis on Solid Freeform Fabrication (SFF), is provided. Fused Deposition of Ceramics (FDC) and Sanders Prototyping (SP) are two SFF techniques that have been utilized to make a variety of novel piezocomposites with connectivity patterns including (1-3), (3-2), (3-1), (2-2) and (3-3). The FDC technique has also been used to prototype a number of actuators such as tube arrays, spiral, oval, telescoping, and monomorph multi-material bending actuators. It has been demonstrated that SFF technology is a viable option for fabricating piezocomposite sensors and actuators with intricate geometry, unorthodox internal architecture, and complex symmetry. The salient aspects of processing of such composite sensors and actuators are summarized, and structure-processing-property relations are elaborated on.  相似文献   

4.
Net shape formed spiral and helical piezoelectric actuators   总被引:2,自引:0,他引:2  
Piezoelectric actuators tend to be made from relatively simple shapes such as blocks, plates and beams. These shapes allow for a range of displacements from key actuation modes but, in order to expand this range, complex structures are required that cannot be made via conventional means. This study presents a novel manufacturing method for such structures using a green ceramic tape lamination process followed by plastic deformation. Furthermore, a helix and a spiral are introduced as examples of initially curved structures. Their actuated behaviour is described by simple but effective models in terms of the standard linear piezoelectric coefficients and is compared to experiments. It is shown that displacements are produced by actuation mechanisms not previously reported in the literature.  相似文献   

5.
Summary In this paper, we examine the coupled electromechanical behaviour of a piezoceramic actuator bonded to a finite elastic medium under inplane mechanical and electric loading. The purpose of the current work is to study the suitability of using a simple actuator model to simulate the load transfer between actuators and the host medium. The actuator is characterized by an electroelastic line model with the poling direction being perpendicular to its length. The solution of this electromechanically couple problem is provided by solving singular integral equations in terms of an interfacial shear stress and conducting finite element analysis. The results show that the transfer of the actuation energy between the actuator and the host structure can be effectively simulated using the developed theoretical model. Typical examples are provided to show the effects of the geometry, the material combination and anisotropy upon the load transfer. The study is further extended to treat the interfacial debonding between the actuator and the host material.  相似文献   

6.
Electromechanical coupling mechanisms in piezoelectric bending actuators are discussed in this paper based on the constitutive equations of cantilever bimorph and unimorph actuators. Three actuator characteristic parameters, (e.g., electromechanical coupling coefficient, maximum energy transmission coefficient, and maximum mechanical output energy) are discussed for cantilever bimorph and unimorph actuators. In the case of the bimorph actuator, if the effect of the bonding layer is negligible, these parameters are directly related to the transverse coupling factor lest. In the case of the unimorph actuator, these parameters also depend on the Young's modulus and the thickness of the elastic layer. Maximum values for these parameters can be obtained by choosing proper thickness ratio and Young's modulus ratio of elastic and piezoelectric layers. Calculation results on four unimorph actuators indicate that the use of stiffer elastic material is preferred to increase electromechanical coupling and output mechanical energy in unimorph actuators.  相似文献   

7.
Engineering methods are presented for calculating mechanical stresses and deformations in homogeneous piezoceramic plates having a nonuniform polarization across their thickness. A detailed examination is made of the design of a piezoceramic modulator for a pyroelectric temperature transducer. The results of numerical calculations are compared with experimental data. Translated from Izmeritel'naya Tekhnika, No. 7, pp. 48–52, July, 1998.  相似文献   

8.
Modern fuel injectors have been developed based on piezoelectric stack actuators. Performance and durability of actuators in a hydrogen environment are important considerations in the development of hydrogen injectors. 2D plane stress and 3D models for analysis of coupled diffusion and thermo-electromechanical response of actuators are presented. Chemical potential, electric field and temperature gradients are taken as driving forces for hydrogen transport. The explicit Euler finite difference method is used to solve the nonlinear diffusion governing equation. The finite element method is used for time-dependent analysis of fully coupled mechanical, electric and thermal fields. The diffusion process and thermo-electromechanical deformations are coupled through the dependence of piezoelectric properties on hydrogen concentration. Experimental results for the piezoelectric coefficient d 33 of PZT ceramics exposed to different hydrogen concentrations are used. A comparison of a fully coupled 2D model with 2D and 3D models with reduced coupling is made to examine the significance of coupling and computational efficiency. Selected numerical results are presented for time histories of hydrogen concentration, temperature and stroke of an idealized actuator unit cell to obtain a preliminary understanding of the performance of actuators exposed to hydrogen.  相似文献   

9.
Ferroelectric microelectromechanical systems (MEMS) has been a growing area of research in past decades, in which ferroelectric films are combined with silicon technology for a variety of applications, such as piezo-electric micromachined ultrasonic transducers (pMUTs), which represent a new approach to ultrasound detection and generation. For ultrasound-radiating applications, thicker PZT films are preferred because generative force and response speed of the diaphragm-type transducers increase with increasing film thickness. However, integration of 4- to 20-microm thick PZT films on silicon wafer, either the deposition or the patterning, is still a bottleneck in the micromachining process. This paper reports on a diaphragm-type pMUT. A composite coating technique based on chemical solution deposition and high-energy ball milled powder has been used to fabricate thick PZT films. Micromachining of the pMUTs using such thick films has been investigated. The fabricated pMUT with crack-free PZT films up to 7-microm thick was evaluated as an ultrasonic transmitter. The generated sound pressure level of up to 120 dB indicates that the fabricated pMUT has very good ultrasound-radiating performance and, therefore, can be used to compose pMUT arrays for generating ultrasound beam with high directivity in numerous applications. The pMUT arrays also have been demonstrated.  相似文献   

10.
11.
This contribution presents original numerical and experimental characterizations for prototyped longitudinally polarized piezoelectric d 15 shear macro-fiber composites (MFC). The numerical characterization consists of a finite element (FE) simulation based on a representative volume element. It implements an enthalpy-based homogenization method (EBHM), recently proposed by the authors, as an extension of the so-called strain energy method to orthotropic piezoelectric fiber-reinforced composites. The numerical validation is carried out on a previously assumed layout of shear MFC. Later on, the EBHM is used to get the effective electromechanical material parameters of the shear MFC actual layout. These parameters are further validated experimentally through their use in the FE simulation of an original actuation benchmark that is proposed for the manufactured shear MFC experimental characterization. The latter is based on low-frequency (quasi-static) displacement measurements where the shear MFC serves as a voltage-driven actuator. Due to the small overall dislocation, a laser vibrometer is used for the measurements. The comparison of experimental and numerical results shows a reasonably good agreement and a nonlinear actuation response is observed. This work’s major outcomes are the experimental validation of the EBHM and the actuation functional operability of the manufactured longitudinally polarized piezoelectric d 15 shear MFC. This opens the possibility for their application as actuator and sensor of shear-induced bending and torsion for vibration, shape and health control, or as a transducer for energy harvesting.  相似文献   

12.
In the present paper a piezoelectric actuator realized for interferometric applications is described, together with a numerical model to simulate its electro-mechanical behavior. The actuator is an open-loop device made up of three piezoelectric ceramics glued into a stainless steel case and connected directly to the parallel port of a personal computer by control electronics developed on purpose. It consists of a 16 bit digital-to-analog converter whose voltage is fixed by the parallel port, a charge amplifier which provides the voltage to the piezoelectric ceramics and a current divider for the control of the voltage on each channel. The layout based on three active elements has allowed to obtain a device which is able to perform a straight expansion with a negligible tilting, a desirable feature for an actuator used for interferometric applications. The hysteretic behavior, a typical characteristic of this kind of actuator, was simulated by a numerical model, based on the Prandtl–Ishlinskii hysteresis operator, which shows a high capability to predict the input–output response at any level of the input signal, and it is efficient enough for use in real-time applications.  相似文献   

13.
基于压电致动器的微动隔振平台系统   总被引:2,自引:2,他引:0       下载免费PDF全文
为实现微仪器隔振平台的自适应控制,对第三代压电致动器顶杆部件进行了改进,并将其直接应用于微隔振系统,隔振效果不是很理想。为此,对致动器进行了系统在线建模,从理论上分析了导致结果不理想的原因,给出了一种改进方法,通过理论建模分析和试验研究,结果表明:该方法虽然降低了致动器位移增益,但具有较好的隔振效果。  相似文献   

14.
The elastic stress and strain fields in a plate of finite thickness containing an elliptical hole are systematically investigated using the 3D finite element method. It is found that the stress and strain concentrations are different in the plate of finite thickness even if the plate is in an elastic state. The relation between the stress and the strain concentration factors depends on Poisson’s ratio, the hole’s geometric configuration and the plate thickness. The stress concentration factor is equal to the strain concentration factor only at the notch root of the plate surface. The stress (or strain) concentration factor at the notch root of the plate surface decreases rapidly with increasing thickness and becomes lower than the stress and strain concentration factors corresponding to the plane stress state or at the notch root of the mid plane. It is too low to reflect the overall stress concentration as the thickness increases or as the b/a ratio decreases. The maximum stress concentration factor occurs on the mid plane only when the plate is thinner than the transition thickness of the stress concentration factor. When the plate is thicker than the transition thickness of the stress concentration factor, the distance between the location of the maximum stress concentration factor and plate surface tends to be constant with increasing thickness for the plate with a given  b/a ratio. The differences between the maximum value and the surface value of the stress and strain concentration factors increase rapidly and tend to their respective constant values with increasing plate thickness. The smaller the b/a ratio, the larger these differences. The difference of the stress concentration factor is larger than that of the strain concentration factor in the same plate.  相似文献   

15.
An analysis of the solutions for various feedback control laws applied to vibrating simply supported plates is evaluated. The control is carried out via a piezoelectric patch sensor and patch actuator. By considering an integral equation formulation, which is equivalent to the differential equation formulation, the analytical results are investigated. The conversion is accomplished by introducing an explicit Green’s function. The feedback controls implemented include displacement, velocity, and a combination of these. A numerical comparison of eigenvalues is presented to illustrate the efficacy of the method and to contrast the effects of the controls. The results presented in the study can be used for benchmarking solutions based in numerical or approximation approaches.  相似文献   

16.
Electromechanical transducers for sensing and actuating disturbances or vibrations have been used in many fields of applications. There have been transducers of different configuration developed for the unidirectional transduction. This paper demonstrates a single element transducer for tri-axial components made of a piezoelectric cylindrical shell. The separation of the tri-axial transductions is achieved by devising a proper electrode arrangement. The structure and the fundamental idea are first presented, and then the numerical analysis by means of the finite element modeling follows, and their characteristics and behaviors are then experimentally verified.  相似文献   

17.
Quasi-static shape control of a smart structure may be achieved through optimizing the applied electric fields, loci, shapes and sizes of piezoelectric actuators attached to the structure. In this paper, a finite element analysis (FEA) software has been developed for analyzing static deformation of smart composite plate structures with non-rectangular shaped PZT patches as actuators. The mechanical deformation of the smart composite plate is modeled using a 3rd order plate theory, while the electric field is simulated based on a layer-wise theory. The finite element formulation is verified by comparing with experimentally measured deformation. Numerical results are obtained for the optimum values of the electric field in the PZT actuators to achieve the desired shape using the linear least square (LLS) method. The numerical results demonstrate the influence of the shapes of actuators.  相似文献   

18.
压电材料的制备应用及其研究现状   总被引:1,自引:0,他引:1  
从压电材料的压电效应入手,介绍了压电材料的分类及结构组成。针对不同压电材料在生产实践中的应用情况,列出现阶段压电材料的制备技术。综述了近年来压电材料的研究现状,并系统介绍了压电材料在各个领域的应用和发展。  相似文献   

19.
This paper deals with the geometrically non-linear analysis of thin plate/shell laminated structures with embedded integrated piezoelectric actuators or sensors layers and/or patches. The motivation for the present developments is the lack of studies in the behavior of adaptive structures using geometrically non-linear models, where only very few published works were found in the open literature.

The model is based on the Kirchhoff classical laminated theory and can be applied to plate and shell adaptive structures with arbitrary shape, general mechanical and electrical loadings.

The finite element model is a non-conforming single layer triangular plate/shell element with 18 degrees of freedom for the generalized displacements and one electrical potential degree of freedom for each piezoelectric layer or patch.

An updated Lagrangian formulation associated to Newton–Raphson technique is used to solve incrementally and iteratively the equilibrium equations.

The model is applied in the solution of four illustrative cases, and the results are compared and discussed with alternative solutions when available.  相似文献   


20.
This study is concerned with the detailed analysis of fiber-reinforced composite plates with integrated piezoceramic fiber composite actuators. A multiscale framework based on the asymptotic expansion homogenization method is used to couple the microscale and macroscale field variables. The microscale fluctuations in the mechanical displacement and electric potential are related to the macroscale deformation and electric fields through 36 distinct characteristic functions. The local mechanical and charge equilibrium equations yield a system of partial differential equations for the characteristic functions that are solved using the finite element method. The homogenized electroelastic properties of a representative material element are computed using the characteristic functions and the material properties of the fiber and matrix. The three-dimensional macroscopic equilibrium equations for a laminated piezoelectric plate are solved analytically using the Eshelby-Stroh formalism. The formulation admits different boundary conditions at the edges and is applicable to thick and thin laminated plates. The microscale stresses and electric displacement in the fibers and matrix are computed from the macroscale fields through interscale transfer operators. The multiscale analysis procedure is illustrated using two model problems. In the first model problem, a simply-supported sandwich plate consisting of a piezoceramic fiber composite shear actuator embedded between two graphite/polymer layers is studied. The second model problem concerns a cantilever graphite/polymer substrate with segmented piezoceramic fiber composite extension actuators attached to its top and bottom surfaces. Results are presented for the homogenized material properties, macroscale deformation, macroscale average stresses and microscale stress distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号