首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aligned and stretched lambda DNA is directed to specific locations on solid substrates. Surface-energy modification of glass substrates by using patterned polydimethylsiloxane (PDMS) stamps is used to direct DNA onto the surface-energy-modified micrometer-scale pattern through molecular combing. As an alternative, patterned and nonpatterned PDMS stamps modified with polymethylmethacrylate (PMMA) are utilized to direct the stretched DNA to the desired location and the results are compared. The DNA is elongated through molecular combing on the stamp and transfer printed onto the surfaces. PMMA-modified stamps show a more defined length of the stretched DNA, as compared to bare PDMS stamps. A combination of these two methods is also demonstrated. As an application example, transfer printing of DNA decorated with a semiconducting conjugated polyelectrolyte is shown. The resulting patterned localization of stretched DNA can be utilized for functional nanodevice structures, as well as for biological applications.  相似文献   

2.
Measuring stress and strain, induced by nanostructures, at the nanometer scale is still a challenge. In this work, we investigate the strain induced by sub-micrometric periodic line arrays deposited on single crystal (001) Si substrate. We study the influence of the lines width and the spacing between the lines for two sets of samples: a silicon nitride lines array and a poly-silicon line array capped with a Si3N4 stressor layer. The periodic strain field in mono-crystalline silicon is investigated by High Resolution X-ray Diffraction which is very sensitive to local strain (< 10(-4)), has the required resolution, and is non-destructive. X-ray reciprocal space maps (RSM) are measured on a 4 circles goniometer with a laboratory source. The line arrays induce a periodic strain field in silicon, which gives rise to distinct satellites in reciprocal space. The intensity envelope of these satellites is related to the strain field in one cell. In order to assess this strain field in silicon, mechanical modeling is necessary. Elastic calculations are performed with a Finite Element Modeling (FEM) code in order to extract the displacement field that is used for structure factor calculations within kinematical approximation. The calculated reciprocal space map is compared to the experimental results in order to validate the strain field. We show that for capped poly arrays, the diffracted intensity envelope is influenced by the spacing between the lines. This area is filled with silicon nitride which induces a noticeable change in displacement and strain field. While for bare stressor arrays the nitride line width is responsible of change in displacement field and thus on the RSM intensity envelope.  相似文献   

3.
Recently, various research strategies have been employed to improve light extraction efficiency in organic LEDs, including the recent development of localized surface plasmon resonance (LSPR), as well as the more widely-known application of a photonic crystal layer. Here, we report on the development of a process method for forming a two-dimensional nanosilver patterned array to achieve LSPR-coupled light-emission efficiency enhancement. The process scheme involves the spin-coating of nanosilver colloidal ink onto a glass substrate, followed by optimized thermal annealing to create an array of isolated nanosilver islands. The resulting Ag islands are in the size range 50 approximately 80 nm, which is larger than the diameter of the Ag nanoparticles in the colloidal suspension. Then, silicon oxide is thermally sputtered to provide a spacer layer to prevent luminescence quenching of the red-emitting nanocrystal quantum dot (NQD) layer, which is deposited in a subsequent spin-coating process. When the NQD layer is excited, the energy of the photoelectron is confined to the surfaces of the nanosilver islands in the near-field. In this study, the localized surface plasmon resonance peaks were at a wavelength of 625 nm, and out-coupling efficiency was enhanced more than sixfold.  相似文献   

4.
We present a new method for the fabrication of horizontal silicon nanowires for application in nanoelectronic devices. A web of horizontally connected silicon nanowires is grown on a silicon substrate using a thin aluminum film as a catalyst. A thin layer of oxide is thermally grown on a silicon substrate. The oxide layer is then selectively etched using photolithography. A thin layer of aluminum is thermally evaporated on the substrate with the patterned oxide layer. When the sample is annealed above the eutectic temperature, we show that the silicon gets deposited along the grain boundaries of aluminum in the form of thin nanowires. We show that this phenomenon is due to the high solubility of silicon in aluminum at high temperatures.The surface morphology was analyzed using Scanning Electron Microscopy (SEM). The compositional analysis was done using Energy Dispersive X-ray spectroscopy (EDX).  相似文献   

5.
In this paper we report on the fabrication of regular arrays of silica nanoneedles by deposition of a thin layer of silica on patterned arrays of polymer nanowires (or polymer nanohair). An array of high-aspect-ratio nanoscale diameter holes of depths greater than 10?μm was produced at the surface of a fused silica wafer by an amplified femtosecond laser system operated in single-pulse mode. Cellulose acetate (CA) film was imprinted into the nanoholes and peeled off to form a patterned array of standing CA nanowires, a negative replica of the laser machined nanoholes. The cellulose acetate replica was then coated with silica in a chemical vapor deposition process using silicon tetrachloride vapor at 65?°C. Field emission scanning electron microscopy, focused ion beam sectioning, energy dispersive x-ray analysis and Fourier-transform infrared spectroscopy were used to characterize the silica nanoneedles. Precisely patterned, functionalized arrays of standing silica nanoneedles are useful for a number of applications.  相似文献   

6.
Surface roughness-controlled nanocrystalline diamond film was fabricated as an undulated line and space pattern on a silicon oxide surface. To simulate a MEMS (Micro-/Electro-Mechanical System) and NEMS (Nano-/Electro-Mechanical System) patterned surface, 800 nm and 1 microm wide lines with a 200 nm wide space pattern were prepared on the substrate using E-beam lithography and an ESAND (Electrostatic Self-assembly of NanoDiamond) seeding layer lift-off process. Through this process, an undulated pattern of a nanocrystalline CVD diamond successfully formed by a conventional micro crystalline diamond growth system. The roughness of the deposited surface was controlled by regulating the size of the seeding nanodiamond particles. Crushing of the nanodiamond aggregates and dispersion of the nanodiamond solution was performed in an attrition milling system. An AFM (Atomic Force Microscopy) probe was used for the wear test and surface profiling of nanocrystalline diamond coatings. 2-D friction coefficient mapping by LFM (Lateral Force Microscopy) scanning showed a low friction coefficient (< 0.1) on the line-patterned diamond surface, and a higher friction coefficient (< 0.3) on a narrow area adjacent to the undulated pattern edges. With prolonged LFM scanning, the high coefficient of friction was reduced to less than 0.1. The bonding status of the nanocrystalline diamond was analyzed with Raman spectroscopy.  相似文献   

7.
C. Gouldstone  Y. Wu  A. Gouldstone 《Strain》2007,43(4):306-310
Abstract:  A semi-analytical approach is taken to calculate the geometric contribution to gauge factor for patterned lines on substrates. A finite element model is presented in which a line section is strained along its length, and cross-sectional dilatation is calculated for different line aspect ratios, and elastic properties of line and substrate. Results are bounded by analytical solutions for infinitely wide and tall lines. A simple experiment is posed for measuring Poisson's ratio and piezoresistivity of coatings, films or patterned structures.  相似文献   

8.
Zhao X  Liu C  Zhang D  Luo Y 《Applied optics》2012,51(15):3024-3030
A configuration of hole patterned electrode liquid crystal microlens array with an ultrathin glass slab was fabricated. To reduce the fringing electric field effect and avoid the occurrence of disclination lines, an ultrathin glass slab was introduced between the patterned electrode and liquid crystal layer. The glass slab thickness played an important role in effecting the optical performance of the liquid crystal microlens array. An optimum thickness of 30 μm was selected employing numerical simulation method. Using this method, we demonstrated a microlens array that greatly improved the phase profile and focus power. The dynamic focal range of the liquid crystal microlens array may extend from <1.2 mm to >8 mm and the minimum diameter of the focus spot could be as small as 15 μm.  相似文献   

9.
A 3 keV low-energy proton beam was used to irradiate a silicon substrate for selective modification. The water contact angle measurement, chemical etching test with HF and the auger electron spectroscopy were used to investigate the chemical properties and the material composition of the proton beam-irradiated silicon substrate. The proton beam-irradiated silicon substrate was covered with a silicon oxide layer of about 60-70 angstroms due to the incorporation of oxygen molecules after exposure to ambient air. The silicon oxide layer produced by the proton beam was highly resistant to HF treatment which typically used to remove the silicon oxide on a substrate, and the surface of it was more hydrophilic than the native silicon oxide removed silicon surface with Si-H surface group. For the selective growth of carbon nanotubes (CNTs), the silicon oxide pattern was easily fabricated via proton beam irradiation when the silicon substrate was covered with a shadow mask. The Fe-Mo bimetallic catalysts for the growth of CNTs were adsorbed onto the silicon oxide layer, which is more hydrophilic than the silicon surface. The CNTs were grown on the patterned substrate using a chemical vapor deposition method, and it was confirmed by scanning electron microscopy.  相似文献   

10.
The optical technique of surface plasmon resonance phase imaging (SPR-PI) is implemented in a linear microarray format for real-time measurements of surface bioaffinity adsorption processes. SPR-PI measures the phase shift of p-polarized light incident at the SPR angle reflected from a gold thin film in an ATR Kretschmann geometry by creating an interference fringe image on the interface with a polarizer-quartz wedge depolarizer combination. The position of the fringe pattern in this image changes upon the adsorption of biomolecules to the gold thin film. By using a linear array of 500 μm biosensor element lines that are perpendicular to the interference fringe image, multiple bioaffinity adsorption measurements can be performed in real time. Two experiments were performed to characterize the sensitivity of the SPR-PI measurement technique: First, a ten line pattern of a self-assembled monolayer of 11-mercaptoundecamine (MUAM) was created via photopatterning to verify that multiple phase shifts could be measured simultaneously. A phase shift difference (Δφ) of Δφ = 182.08 ± 0.03° was observed for the 1.8 nm MUAM monolayer; this value agrees with the phase shift difference calculated from a combination of Fresnel equations and Jones matrices for the depolarizer. In a second demonstration experiment, the feasibility of SPR-PI for in situ bioaffinity adsorption measurements was confirmed by detecting the hybridization and adsorption of single stranded DNA (ssDNA) onto a six-component DNA line microarray patterned monolayer. Adsorption of a full DNA monolayer produced a phase shift difference of Δφ = 28.80 ± 0.03° at the SPR angle of incidence and the adsorption of the ssDNA was monitored in real time with the SPR-PI. These initial results suggest that SPR-PI should have a detection limit roughly 100 times lower than traditional intensity-based SPR imaging measurements.  相似文献   

11.
This work was devoted to the development of a Ge quantum dot memory structure of a MOSFET type with laterally ordered Ge quantum dots within the gate dielectric stack. Lateral ordering of the Ge dots was achieved by the combination of the following technological steps: (a) use of a focused ion beam (FIB) to create ordered two-dimensional arrays of regular holes on a field oxide on the silicon substrate, (b) chemical cleaning and restoring of the Si surface in the holes, (c) further oxidation to transfer the pattern from the field oxide to the silicon substrate, (d) removal of the field oxide and thermal re-oxidation of the sample in order to create a tunneling oxide of homogeneous thickness on the patterned silicon surface, and (e) self-assembly of the two-dimensional arrays of Ge dots on the patterned tunneling oxide. The charging properties of the obtained memory structure were characterized by electrical measurements. Charging of the Ge quantum dot layer by electrons injected from the substrate resulted in a large shift in the capacitance-voltage curves of the MOS structure. Charges were stored in deep traps in the charging layer, and consequently the erasing process was difficult, resulting in a limited memory window. The advantages of controlled positioning of the quantum dots in the charging layer will be discussed.  相似文献   

12.
Lee JP  Bang BM  Choi S  Kim T  Park S 《Nanotechnology》2011,22(27):275305
We demonstrate a facile fabrication of a rich variety of silicon patterns with different length scales by combining polymer lithography and a metal-assisted chemical etching method. Several types of polymer patterns were fabricated on silicon substrates, and silver layers were deposited on the patterned silicon surfaces and used to etch the silicon beneath. Various silicon patterns including topographic lines, concentric rings, and square arrays were created at a micro-?and nanoscale after etching the silicon and subsequent removal of the patterned polymer masks. Alternatively, the arrays of sub-30?nm silicon nanowires were produced by a chemical etching of the silicon wafer which was covered with highly ordered polystyrene-block-polyvinylpyridine (PS-b-PVP) micellar films. In addition, silicon nanohole arrays were also generated by etching with hexagonally packed silver nanoparticles that were prepared using PS-b-PVP block copolymer templates.  相似文献   

13.
Nanoparticles offer unique physical and chemical properties. Dip pen nanolithography of nanoparticles enables versatile patterning and nanofabrication with potential application in electronics and sensing, but is not well studied yet. Herein, the patterned deposition of various nanoparticles onto unmodified silicon substrates is presented. It is shown that aqueous solutions of hydrophilic citrate and cyclodextrin functionalized gold nanoparticles as well as poly(acrylic) acid decorated magnetite nanoparticles are feasible for writing nanostructures. Both smaller and larger nanoparticles can be patterned. Hydrophobic oleylamine or n-dodecylamine capped gold nanoparticles and oleic acid decorated magnetite nanoparticles are deposited from toluene. Tip loading is carried out by dip-coating, and writing succeeds fast within 0.1 s. Also, coating with longer tip dwell times, at different relative humidity and varying frequency are studied for deposition of nanoparticle clusters. The resulting feature size is between 300 and 1780 nm as determined by scanning electron microscopy. Atomic force microscopy confirms that the heights of the deposited structures correspond to a single or double layer of nanoparticles. Higher writing speeds lead to smaller line thicknesses, offering possibilities to more complex structures. Dip pen nanolithography can hence be used to pattern nanoparticles on silicon substrates independent of the surface chemistry.  相似文献   

14.
This study reports a novel patterning method for highly pure poly(3,4-ethylenedioxythiophene) (PEDOT) nanofilms having a particularly strong adhesion to a SiO2 surface. An oxidized silicon wafer substrate was micro-contact printed with n-octadecyltrichlorosilane (OTS) monolayer, and subsequently its negative pattern was self-assembled with three different amino-functionalized alkylsilanes, (3-aminopropyl)trimethoxysilane (APS), N-(2-aminoethyl)-3-aminopropyltrimethoxy silane (EDAS), and (3-trimethoxysilylpropyl) diethylenetriamine (DETS). Then, PEDOT nanofilms were selectively grown on the aminosilane pre-patterned areas via the vapor phase polymerization method. To evaluate the adhesion and patterning, the PEDOT nanofilms and SAMs were investigated with a Scotch tape test, contact angle analyzer, optical and atomic force microscopes. The evaluation revealed that the newly developed bottom-up process can successfully offer a strongly adhered and selectively patterned PEDOT nanofilm on an oxidized Si wafer surface.  相似文献   

15.
Abstract

Tungsten chemical-mechanical polished integrated circuits were used to study the alignment and immobilization of mammalian (Vero) cells. These devices consist of blanket silicon oxide thin films embedded with micro- and nano-meter scale tungsten metal line structures on the surface. The final surfaces are extremely flat and smooth across the entire substrate, with a roughness in the order of nanometers. Vero cells were deposited on the surface and allowed to adhere. Microscopy examinations revealed that cells have a strong preference to adhere to tungsten over silicon oxide surfaces with up to 99% of cells adhering to the tungsten portion of the surface. Cells self-aligned and elongated into long threads to maximize contact with isolated tungsten lines as thin as 180 nm. The orientation of the Vero cells showed sensitivity to the tungsten line geometric parameters, such as line width and spacing. Up to 93% of cells on 10 μm wide comb structures were aligned within ± 20° of the metal line axis. In contrast, only ~22% of cells incubated on 0.18 μm comb patterned tungsten lines were oriented within the same angular interval. This phenomenon is explained using a simple model describing cellular geometry as a function of pattern width and spacing, which showed that cells will rearrange their morphology to maximize their contact to the embedded tungsten. Finally, it was discovered that the materials could be reused after cleaning the surfaces, while maintaining cell alignment capability.  相似文献   

16.
A bit patterned magnetic array based on Co/Pd magnetic multilayers with a binary perpendicular magnetic anisotropy distribution was fabricated. The binary anisotropy distribution was attained through angled helium ion irradiation of a bit edge using hydrogen silsesquioxane (HSQ) resist as an ion stopping layer to protect the rest of the bit. The viability of this technique was explored numerically and evaluated through magnetic measurements of the prepared bit patterned magnetic array. The resulting graded bit patterned magnetic array showed a 35% reduction in coercivity and a 9% narrowing of the standard deviation of the switching field.  相似文献   

17.
The photothermal laser patterning of functional organic monolayers, prepared on oxide‐free hydrogen‐terminated silicon, and subsequent backfilling of the laser‐written lines with a second organic monolayer that differs in its terminal functionality, is described. Since the thermal monolayer decomposition process is highly nonlinear in the applied laser power density, subwavelength patterning of the organic monolayers is feasible. After photothermal laser patterning of hexadecenyl monolayers, the lines freed up by the laser are backfilled with functional acid fluoride monolayers. Coupling of cysteamine to the acid fluoride groups and subsequent attachment of Au nanoparticles allows easy characterization of the functional lines by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Depending on the laser power and writing speed, functional lines with widths between 1.1 μm and 250 nm can be created. In addition, trifluoroethyl‐terminated (TFE) monolayers are also patterned. Subsequently, the decomposed lines are backfilled with a nonfunctional hexadecenyl monolayer, the TFE stripes are converted into thiol stripes, and then finally covered with Au nanoparticles. By reducing the lateral distance between the laser lines, Au‐nanoparticle stripes with widths close to 100 nm are obtained. Finally, in view of the great potential of this type of monolayer in the field of biosensing, the ease of fabricating biofunctional patterns is demonstrated by covalent binding of fluorescently labeled oligo‐DNA to acid‐fluoride‐backfilled laser lines, which—as shown by fluorescence microscopy—is accessible for hybridization.  相似文献   

18.
The uniformity and reproducibility of the photoresist nanopatterns fabricated using near-field scanning optical nanolithography (NSOL) are investigated. The nanopatterns could be used as nanomasks for pattern transfer on a silicon wafer. In the NSOL process, uniform patterning with high reproducibility is essential for reliable transfer of the mask patterns on a silicon substrate. Using an aperture type cantilever nanoprobe operated at contact mode and a positive photoresist, various nanopatterns are produced on thin photoresist layer coated on the silicon substrate. The size and shape variations of thereby produced patterns are investigated using atomic force microscope to determine their uniformity and reproducibility. It is demonstrated that the NSOL-produced photo-resist nanomasks can be successfully applied for silicon pattern transfer by fabricating a silicon nanochannel array.  相似文献   

19.
DNA is the prototype template for building nanoelectronic devices by self-assembly. The electronic functions are made possible by coordinating electronic polymer chains to DNA. This paper demonstrates two methods for fabrication of aligned and ordered DNA nanowires complexed with conjugated polyelectrolytes (CPEs). The complex can be formed either in solution prior to stretching or after stretching of the bare DNA on a surface. Molecular combing was used to stretch the complexes on surface energy patterned surfaces, and PMMA for the bare DNA. Single molecular spectroscopy, in fluorescence, and microscopy, in atomic force microscopy, give evidence for coordination of the short CPE chains to the aligned DNA.  相似文献   

20.
The novel thin film solar cell with a nanoplate structure that can solve the conflict between the light absorption and the carrier transport in amorphous silicon thin film solar cell was investigated by TCAD simulations. This new structure has n-type amorphous silicon nanoplate array on the substrate, and p-type amorphous silicon-carbon as window layer and intrinsic amorphous silicon as absorption layer are sequentially grown along the surface of each n-type amorphous silicon nanoplate. Under AM 1.5 G sunlight illumination, the light is absorbed along the vertical direction of nanoplate while the carrier transport is along the horizontal direction. Therefore, nanoplate with the larger height can absorb most of the sunlight. The advantage of this novel structure is that the thickness of the solar cell can be used as thin as possible for effective transport of photo-generated carriers in comparison with the planer one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号