首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The U.S. Department of Energy (USDOE) Hydrogen Program works with industry, academia, and National Laboratories through research and development to overcome technical barriers of fuel cell and hydrogen production, delivery, and storage technologies. Two of the major challenges in the advancement of fuel cell technology are cost and durability of the polymer electrolyte membranes used for proton conduction in the fuel cell. To address these challenges, DOE initiated new membrane research and development projects to design membranes that meet its 2010 technical targets and will lead to membranes that operate in a fuel cell system that performs as well and costs as little as internal combustion engines. Three strategies are employed in the program: implementation of phase segregation in the membrane to create proton conduction pathways, use of non-aqueous proton conductors for operation under dry conditions, and hydrophilic additives to retain water at low relative humidity.  相似文献   

2.
The polymer electrolyte membrane (PEM) based fuel cells are clean alternative energy systems that hold excellent potential for cost effectiveness, durability, and relatively high overall efficiency. PEM fuel cell is recognized by the U.S. Department of Energy (DOE) as the main candidate to replace the internal combustion engine in transportation applications. Metallic bipolar plates and membrane electrode assembly (MEA) are two crucial components of a PEM power stack and their durability and fabrication cost must be optimized to allow fuel cells to penetrate the commercial market and compete with other energy sources.  相似文献   

3.
A utilized regenerative solid oxide fuel cell (URSOFC) provides the dual function of performing energy storage and power generation, all in one unit. When functioning as an energy storage device, the URSOFC acts like a solid oxide electrolyzer cell (SOEC) in water electrolysis mode; whereby the electric energy is stored as (electrolyzied) hydrogen and oxygen gases. While hydrogen is useful as a transportation fuel and in other industrial applications, the URSOFC also acts as a solid oxide fuel cell (SOFC) in power generation mode to produce electricity when needed. The URSOFC would be a competitive technology in the upcoming hydrogen economy on the basis of its low cost, simple structure, and high efficiency. This paper reports on the design and manufacturing of its anode support cell using commercially available materials. Also reported are the resulting performance, both in electrolysis and fuel cell modes, as a function of its operating parameters such as temperature and current density. We found that the URSOFC performance improved with increasing temperature and its fuel cell mode had a better performance than its electrolysis mode due to a limited humidity inlet causing concentration polarization. In addition, there were great improvements in performance for both the SOFC and SOEC modes after the first test and could be attributed to an increase in porosity within the oxygen electrode, which was beneficial for the oxygen reaction.  相似文献   

4.
The aim of the paper is to investigate possible improvements in the geometry design of a monolithic solid oxide fuel cells (SOFCs) through analysis of the entropy generation terms. The different contributions to the local rate of entropy generation are calculated using a computational fluid dynamic (CFD) model of the fuel cell, accounting for energy transfer, fluid dynamics, current transfer, chemical reactions and electrochemistry. The fuel cell geometry is then modified to reduce the main sources of irreversibility and increase its efficiency.  相似文献   

5.
Durability is one of the major barriers to polymer electrolyte membrane fuel cells (PEMFCs) being accepted as a commercially viable product. It is therefore important to understand their degradation phenomena and analyze degradation mechanisms from the component level to the cell and stack level so that novel component materials can be developed and novel designs for cells/stacks can be achieved to mitigate insufficient fuel cell durability. It is generally impractical and costly to operate a fuel cell under its normal conditions for several thousand hours, so accelerated test methods are preferred to facilitate rapid learning about key durability issues. Based on the US Department of Energy (DOE) and US Fuel Cell Council (USFCC) accelerated test protocols, as well as degradation tests performed by researchers and published in the literature, we review degradation test protocols at both component and cell/stack levels (driving cycles), aiming to gather the available information on accelerated test methods and degradation test protocols for PEMFCs, and thereby provide practitioners with a useful toolbox to study durability issues. These protocols help prevent the prolonged test periods and high costs associated with real lifetime tests, assess the performance and durability of PEMFC components, and ensure that the generated data can be compared.  相似文献   

6.
The effects of temperature on corrosion behavior, wettability, and surface conductivity of 304 stainless steel (SS304) in simulated cathode environment of proton exchange membrane fuel cells (PEMFC) are investigated systematically using electrochemical tests and surface analyses. The results indicate that although the corrosion resistance of SS304 is decreased with the rising of solution temperature, the current density of SS304 at the working potential in the simulated PEMFC cathode environment can still meet the 2025 U.S. Department of Energy (DOE) technical target (icorr < 1 μA cm?2). Meanwhile, the surface wettability and ICR of SS304 samples after potentiostatic polarization show a continuous increase with the rise of the simulated solution temperature. The surface conductivity of SS304 both before and after polarization cannot reach the 2025 DOE technical target (<0.01 Ω cm2) and needs to be improved by surface modification.  相似文献   

7.
In this paper we first show that the linear models of proton exchange membrane (polymer electrolyte membrane, PEM) and solid oxide (SO) fuel cells, commonly used in power and energy literature, are not controllable. The source of uncontrollability is the equation for pressure of the water vapor that is only affected by the fuel cell current, which in fact is a disturbance in this system and cannot be controlled by the given model inputs: inlet molar flow rates of hydrogen and oxygen. Being uncontrollable these models are not good candidates for studying control of dynamic processes in PEM and SO fuel cells. However, due to their simplicity, they can be used in hybrid configurations with other energy producing devices such as photovoltaic (solar) cells, wind turbine, micro gas turbine, battery (ultra capacitor) to demonstrate some other phenomena, but not for control purposes unless the hybrid models formed in such hybrid configurations are controllable. Testing controllability of such hybrid models is mandatory. Secondly, we introduce some algebraic constraints that follow from the model dynamics and the Nernst open-loop fuel cell voltage formula. These constraints must be satisfied in simulation of considered fuel cell modes, for example, via MATLAB/Simulink or any other computer software package.  相似文献   

8.
The operation of a pair of anode-to-anode-facing solid oxide fuel cells (SOFCs) via in situ catalytic partial oxidation (CPO) of n-butane was investigated. In this simple “no-chamber” setup, butane is partially oxidized by heterogeneous reactions inside the porous anodes, providing processed fuel and the heat required for SOFC operation. The cell couple yielded a power density of up to 270 mW cm−2, and the maximum total power obtained was 1.2 W with cell sizes of 13 mm × 23 mm. The maximum electrical efficiency was 1.3%. High CO concentrations of up to 1000 ppm were detected in the exhaust gas, indicating that the cell couple could not efficiently consume the complete provided fuel. A flame, lit at the exhaust, minimized the carbon monoxide level while having insignificant influence on the cell performance. Thermal insulation of the cell couple improved the output remarkably, showing the strong influence of temperature on cell performance. The two cells had a distance of only 2 mm, suggesting a potential for high volumetric power densities in multi-cell configurations for a self-sustained combined heat and power system.  相似文献   

9.
10.
Proton exchange membrane fuel cell (PEMFC) performance depends on different fuel cell operating temperatures, humidification temperatures, operating pressures, flow rates, and various combinations of these parameters. This study employed the method of the design of experiments (DOE) to obtain the optimal combination of the six primary operating parameters (fuel cell operating temperatures, operating pressures, anode and cathode humidification temperatures, anode and cathode stoichiometric flow ratios). In the first stage, this study adopted a 2k−2 fractional factorial design of the DOE to determine whether these factors have significant effects on a response and the interactions between various parameters. Second, the L27(313) orthogonal array of the Taguchi method is utilized to determine the optimal combination of factors for a fuel cell. Based on this study, the operating pressure, the operating temperature, and the interactions between operating temperature and operating pressure have a significant effect on the fuel cell performance. Among them, the operating pressure is the most important contributor. When the operating pressure increases, it should simultaneously lower the effects of other factors. While both the operating temperature and pressure increase simultaneously with that, the other factors are at appropriate conditions, it is possible to improve the fuel cell performance.  相似文献   

11.
Operating strategies of solid oxide fuel cell (SOFC) combined heat and power (CHP) systems are developed and evaluated from a utility, and end-user perspective using a fully integrated SOFC-CHP system dynamic model that resolves the physical states, thermal integration and overall efficiency of the system. The model can be modified for any SOFC-CHP system, but the present analysis is applied to a hotel in southern California based on measured electric and heating loads. Analysis indicates that combined heat and power systems can be operated to benefit both the end-users and the utility, providing more efficient electric generation as well as grid ancillary services, namely dispatchable urban power.Design and operating strategies considered in the paper include optimal sizing of the fuel cell, thermal energy storage to dispatch heat, and operating the fuel cell to provide flexible grid power. Analysis results indicate that with a 13.1% average increase in price-of-electricity (POE), the system can provide the grid with a 50% operating range of dispatchable urban power at an overall thermal efficiency of 80%. This grid-support operating mode increases the operational flexibility of the SOFC-CHP system, which may make the technology an important utility asset for accommodating the increased penetration of intermittent renewable power.  相似文献   

12.
To protect solid oxide fuel cell (SOFC) stack and meet the voltage demand of DC type loads, two control loops are designed for controlling fuel utilization and output voltage, respectively. A Hammerstein model of the SOFC is first presented for developing effective control strategies, in which the nonlinear static part is approximated by a radial basis function neural network (RBFNN) and the linear dynamic part is modeled by an autoregressive with exogenous input (ARX) model. As we know, the output voltage of the SOFC changes with load variations. After a primary control loop is designed to keep the fuel utilization as a steady-state constant, a nonlinear model predictive control (MPC) based on the Hammerstein model is developed to control the output voltage of the SOFC. The performance of the MPC controller is compared with that of the PI controller developed in [Y.H. Li, S.S. Choi, S. Rajakaruna, An analysis of the control and operation of a solid oxide fuel-cell power plant in an isolated system, IEEE Trans. Energy Convers. 20 (2) (2005) 381–387]. Simulation results demonstrate the potential of the proposed Hammerstein model for application to the control of the SOFC, while the excellence of the nonlinear MPC controller for voltage control of the SOFC is proved.  相似文献   

13.
This study presents a 3D CFD model of a planar SOFC with internal reforming for anode flow field design. The developed model reflects the influence of various factors on fuel cell performance including flow field design and kinetics of chemical and electrochemical reactions. The case study illustrates applications of the CFD model for planar SOFC with different anode flow field designs. Simulation results indicate the importance of the anode flow field design for planar SOFCs. The model is useful for optimization of fuel cell design and operating conditions.  相似文献   

14.
In this paper, the performance evaluation of a solid oxide fuel cell (SOFC)–micro gas turbine (MGT) hybrid power generation system under the part-load operation was studied numerically. The present analysis code includes distributed parameters model of the cell stack module. The conversions of chemical species for electrochemical process and fuel reformation process are considered. Besides the temperature distributions of the working fluids and each solid part of cell module by accounting heat generation and heat transfers, are taken into calculation. Including all of them, comprehensive energy balance in the cell stack module is calculated. The variable MGT rotational speed operation scheme is adopted for the part-load operation. It will be made evident that the power generation efficiency of the hybrid system decreases together with the power output. The major reason for the performance degradation is the operating temperature reduction in the SOFC module, which is caused by decreasing the fuel supply and the heat generation in the cells. This reduction is also connected to the air flow rate supplement. The variable MGT rotational speed control requires flexible air flow regulations to maintain the SOFC operating temperature. It will lead to high efficient operation of the hybrid system.  相似文献   

15.
Lignite, also known as brown coal, and char derived from lignite by pyrolysis were investigated as fuels for direct carbon solid oxide fuel cells (DC-SOFC). Experiments were carried out with 16 cm2 active area, electrolyte supported solid oxide fuel cell (SOFC), using pulverized solid fuel directly fed to DC-SOFC anode compartment in a batch mode, fixed bed configuration. The maximum power density of 143 mW/cm2 was observed with a char derived from lignite, much higher than 93 mW/cm2 when operating on a lignite fuel. The cell was operating under electric load until fuel supply was almost completely exhausted. Reloading fixed lignite bed during a thermal cycle resulted in a similar initial cell performance, pointing to feasibility of fuel cell operation in a continuous fuel supply mode. The additional series of experiments were carried out in SOFC cell, in the absence of solid fuels, with (a) simulated CO/CO2 gas mixtures in a wide range of compositions and (b) humidified hydrogen as a reference fuel composition for all cases considered. The solid oxide fuel cell, operated with 92%CO + 8%CO2 gas mixture, generated the maximum power density of 342 mW/cm2. The fuel cell performance has increased in the following order: lignite (DC-SOFC) < char derived from lignite (DC-SOFC) < CO + CO2 gas mixture (SOFC) < humidified hydrogen (SOFC).  相似文献   

16.
Solid oxide fuel cell (SOFC) has experienced a growing interest in the last few decades because of generating energy more efficiently than the conventional combustion of fossil fuels. By using the same material as anode and cathode of SOFC (symmetric fuel cell), the production of reliable and repeatable cells would be simpler. In this work, La0.4Sr0.6Co0.2Fe0.7Nb0.1O3−δ (LSCFN) perovskite has been prepared and evaluated as both cathode and anode material of symmetric fuel cell. The results of symmetric fuel cell show that a maximum peak power density of 500 mW cm−2 has been achieved and the total electrode polarization resistances of the cell is only 0.22 Ω cm2 at 850 °C which is much lower than that of typical symmetric fuel cell with La0.75Sr0.25Cr0.5Mn0.5O3−δ as electrode material. All of these results indicate that LSCFN can potentially be a promising candidate for the electrode material of symmetric fuel cell.  相似文献   

17.
Polymer electrolyte membrane (PEM) fuel cells, which convert the chemical energy stored in hydrogen fuel directly and efficiently to electrical energy with water as the only byproduct, have the potential to reduce our energy use, pollutant emissions, and dependence on fossil fuels. Great deal of efforts has been made in the past, particularly during the last couple of decades or so, to advance the PEM fuel cell technology and fundamental research. Factors such as durability and cost still remain as the major barriers to fuel cell commercialization. In the past two years, more than 35% cost reduction has been achieved in fuel cell fabrication, the current status of $61/kW (2009) for transportation fuel cell is still over 50% higher than the target of the US Department of Energy (DOE), i.e. $30/kW by 2015, in order to compete with the conventional technology of internal-combustion engines. In addition, a lifetime of ∼2500 h (for transportation PEM fuel cells) was achieved in 2009, yet still needs to be doubled to meet the DOE’s target, i.e. 5000 h. Breakthroughs are urgently needed to overcome these barriers. In this regard, fundamental studies play an important and indeed critical role. Issues such as water and heat management, and new material development remain the focus of fuel-cell performance improvement and cost reduction. Previous reviews mostly focus on one aspect, either a specific fuel cell application or a particular area of fuel cell research. The objective of this review is three folds: (1) to present the latest status of PEM fuel cell technology development and applications in the transportation, stationary, and portable/micro power generation sectors through an overview of the state-of-the-art and most recent technical progress; (2) to describe the need for fundamental research in this field and fill the gap of addressing the role of fundamental research in fuel cell technology; and (3) to outline major challenges in fuel cell technology development and the needs for fundamental research for the near future and prior to fuel cell commercialization.  相似文献   

18.
《Journal of power sources》2006,159(2):1241-1247
The U.S. Department of Energy's (DOE) Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL), in partnership with private industry, educational institutions and national laboratories, is leading the development and demonstration of high efficiency, high temperature solid oxide fuel cells (SOFCs) and fuel cell turbine (FCT) hybrid power generation systems for stationary markets including auxiliary power units (APUs), distributed generation (DG) and large, coal-based central power plants. The DOE FE fuel cells program has three aspects: the Solid State Energy Conversion Alliance (SECA), Fuel Cell Coal Based Systems for central power, and the High Temperature Electrochemistry Center (HiTEC). The SECA goal is to decrease SOFC system cost to US$ 400 per kilowatt (kW) by 2010 for stationary markets. DOE FE is ultimately concerned with coal-based central power plants such as FutureGen. The goal is to aggregate SECA-type fuel cells into larger systems and to produce a very high efficiency megawatt-class FCT hybrid for testing at FutureGen. The low-cost, US$ 400 kW−1 SECA FCT hybrid is a key component to achieving 60% efficiency by 2020. Advanced aspects of solid oxide technology are part of HiTEC R&D. Technical progress and advances are discussed for all three program aspects.  相似文献   

19.
The metal bipolar plates (BPs) have replaced the graphite BPs in vehicle‐used proton exchange membrane fuel cell (PEMFC) stack because of their high volume power density. To investigate the durability of metal BP stack, this paper performed a durability test of 2000 hours on a 10‐cell metal BP fuel cell stack. The degradations of the average voltage and individual cell voltage in fuel cell stack were analyzed. To investigate the degradation mechanism, the stack was disassembled and the morphologies and compositions of no. 1, no. 5, and no. 10 cells after 2000 hours were characterized by SEM, TEM, and ASS. The results indicated that at 800 mA/cm2, the voltage decay rate is 42.303 μV/hour and the voltage decay percentage of the stack is 14.34% after 2000 hours according to the linearly fitting result. According to the US Department of Energy (DOE) definition of fuel cell stack life, only the voltage decay rate of OCV and the tenth cell is lower than the maximum voltage degradation rates of 10 000 hours. The decreases of homogeneity of stack were the main reason for its performance degradation. Especially for the tenth cell, its performance has almost no drop. The main failure reason of this metal BP stack is structural design rather than metal corrosion. The losses of Pt catalyst and C supporting are the main reason of performance degradation.  相似文献   

20.
Although proton exchange membrane (PEM) fuel cells are seen as one of the energy conversion technologies of the future due to their high energy conversion efficiency, low levels of emissions, low temperature operation, and compact systems, studies continue to reduce their cost, which is the biggest obstacle to commercialization. Design of experiment (DOE) methods are frequently used in optimization of PEM fuel cells to reduce their cost by decreasing experimental runs. This paper reviews the main gains subsuming the usage of several DOE and optimization methods in PEM fuel cell components, design, operation conditions, and model parameters. It firstly focuses on the Taguchi method and response surface methodology (RSM) known to be applied usually in PEM fuel cell studies. In addition to these known methods, other experimental design and optimization methods used in PEM fuel cells are discussed, and the results are summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号