首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents the main conclusions and recommendations derived from the EVIDOS project, which is supported by the European Commission within the 5(th) Framework Programme. EVIDOS aims at evaluating state of the art neutron dosimetry techniques in representative workplaces of the nuclear industry with complex mixed neutron-photon radiation fields. This analysis complements a series of individual papers which present detailed results and it summarises the main findings from a practical point of view. Conclusions and recommendations are given concerning characterisation of radiation fields, methods to derive radiation protection quantities and dosemeter results.  相似文献   

2.
Individual neutron dosimetry represents one of the current difficulties in the field of radiological protection of workers. Since March 1999, the regulatory requirements in France for active (i.e. operational) dosimetry have been those of ICRP Publication 60, applicable from May 2000, necessitating the introduction of a new generation of neutron dosemeters. Over the last few years, the Institute for Nuclear Safety and Protection has been studying an individual electronic dosemeter for neutrons based on a semiconducting detector, capable of meeting the specifications laid down by a neutron dosimetry work group, including members from all the main players in the French nuclear industry. In 1998, the IPSN began transferring technology to the Saphymo company which, by the end of 2001, will be marketing Saphydose-n, the first individual dosemeter for neutrons which complies with IEC Standard 1323. This dosemeter is of compact design and can assess the individual dose equivalent Hp(10) in mixed neutron and gamma radiation fields. It wil be usable in any nuclear facility without prior knowledge of the average neutron spectrum or of the neutron-gamma ratio. It will be possible to connect the Saphydose-n dosemeter to any of the existing gamma deserter terminals to read the dose data and recharge the batteries.  相似文献   

3.
EVIDOS ('evaluation of individual dosimetry in mixed neutron and photon radiation fields') is an European Commission (EC)-sponsored project that aims at a significant improvement of radiation protection dosimetry in mixed neutron/photon fields via spectrometric and dosimetric investigations in representative workplaces of the nuclear industry. In particular, new spectrometry methods are developed that provide the energy and direction distribution of the neutron fluence from which the reference dosimetric quantities are derived and compared to the readings of dosemeters. The final results of the project will be a comprehensive set of spectrometric and dosimetric data for the workplaces and an analysis of the performance of dosemeters, including novel electronic dosemeters. This paper gives an overview of the project and focuses on the results from measurements performed in calibration fields with broad energy distributions (simulated workplace fields) and on the first results from workplaces in the nuclear industry, inside a boiling water reactor and around a spent fuel transport cask.  相似文献   

4.
The authors carried out an operational study that compared the use of TLD albedo dosemeters and solid state nuclear tracks detector in plutonium environments of Japan Nuclear Cycle Development Institute, Tokai Works. A selected group of workers engaged in the fabrication process of MOX (Plutonium-Uranium mixed oxide) fuel wore both TLD albedo dosemeters and solid state nuclear tracks detectors. The TL readings were generally proportional to the counted etch-pits, and thus the dose equivalent results obtained from TLD albedo dosemeter agreed with those from solid state nuclear tracks detector within a factor of 1.5. This result indicates that, in the workplaces of the MOX fuel plants, the neutron spectrum remained almost constant in terms of time and space, and the appropriate range of field-specific correction with spectrum variations was small in albedo dosimetry.  相似文献   

5.
With the aim of improving the monitoring of workers potentially exposed to neutron radiation in Brazil, the IPEN/CNEN-SP in association with PRO-RAD designed and developed a passive individual gamma-neutron mixed-field dosemeter calibrated to be used to (241)AmBe sources. To verify the dosimetry system response to different neutron spectra, prototypes were irradiated with a (252)Cf source and evaluated using the dose-calculation algorithm developed for (241)AmBe sources.  相似文献   

6.
A neutron field characterisation was conducted at the AREVA Melox Plant to determine the response of passive and active neutron dosemeters for several stages in the mixed oxide fuel manufacturing process. Landauer Europe provides radiation dosimetry to many contractors working at the Melox site. The studies were conducted to assist in determining the neutron radiation fields the workers are exposed to routinely, evaluate the need for specific neutron correction factors and to ensure that the most accurate neutron dose is reported for the Melox Plant workers.  相似文献   

7.
Variations in the energy dependence of response of neutron personal dosemeters cause systematic errors in the readings obtained in workplace fields. The magnitude of these errors has been determined theoretically by folding measured and calculated workplace energy distributions with dosemeter response functions, to determine the response of a given personal dosemeter in that field. These results have been analysed with consideration of the dosemeter response to various calibration spectra, and with reference to different workplaces. The dosemeters in the study are discussed in terms of the workplaces for which they can be suitably calibrated. Deficiencies in the published neutron energy distributions are identified.  相似文献   

8.
Progress report of the CR-39 neutron personal monitoring service at PSI   总被引:1,自引:0,他引:1  
At the Paul Scherrer Institute a personal neutron dosimetry system based on chemically etched CR-39 detectors and automatic track counting is in routine use since the beginning of 1998. The quality of the CR-39 detectors has always been a crucial aspect to maintain a trustable personal neutron dosimetry system. This paper summarises the 7 y experience in routine use. The effect of detector material defects which could lead to false positive neutron doses is described. The potentiality of improving the background statistics by extending the pre-etch time is investigated and involves as a drawback a quite lower sensitivity to thermal neutrons. Furthermore, the impact of small changes in the production process of the detectors on the response to fast and thermal neutrons is shown. For the personal dosimetry at CERN, a new dosimetry concept was launched by combining a CR-39 neutron dosemeter with a Direct-Ion Storage (DIS) dosemeter for photon and beta radiation. The usage period of the CR-39 dosemeters is prolonged now from 3 months up to 12 months. In this context, the long-term behaviour over 1 y of the background track density and the response to Am-Be are described.  相似文献   

9.
To predict how accurately neutron dosemeters can measure the neutron dose equivalent (rate) in MOX fuel fabrication facility work environments, the dose equivalent responses of neutron dosemeters were calculated by the spectral folding method. The dosemeters selected included two types of personal dosemeter, namely a thermoluminescent albedo neutron dosemeter and an electronic neutron dosemeter, three moderator-based neutron survey meters, and one special instrument called an H(p)(10) monitor. The calculations revealed the energy dependences of the responses expected within the entire range of neutron spectral variations observed in neutron fields at workplaces.  相似文献   

10.
In neutron reference radiation fields, the conventional true value of the personal dose equivalent, H(p)(10), is derived from the spectral neutron fluence and recommended conversion coefficients. This procedure requires the phantom on which the personal dosemeter is mounted to be irradiated with a broad and parallel beam. In many practical situations, the change of the neutron fluence and/or the energy distribution over the surface of the phantom may not be neglected. For a selection of typical irradiation conditions in neutron reference radiation fields, the influence of this effect has been analysed using numerical methods. A further problem, which is of relevance for the calibration of dosemeters measuring both the neutron and the photon component of mixed fields, is the 'double counting' of the dose equivalent due to neutron-induced photons. The relevance of this conceptual problem for calibrations in mixed-field dosimetry was analysed.  相似文献   

11.
This paper describes the results of a study performed on a mixed field neutron/gamma (n/gamma) area dosemeter incorporating radiophotoluminescent (RPL) glass detectors. RPL glass is known to be virtually insensitive to neutrons. The aim of the study was therefore to determine the neutron response of a dosemeter designed to combine n/gamma conversion with RPL detection capability. Monte Carlo calculations as well as measurements using monoenergetic beams and isotopic neutron sources showed this response to be constant, to within 30% in terms of H*(10), and independent of neutron energy from 250 keV to 10 MeV. For area monitoring, tests carried out in nuclear facilities (around PuO2 glove box and shipping casks containing PWR, MOX spent fuels or vitrified fission product) demonstrated that dosemeter response was accurate to within 15%, where the gamma component of the mixed n,gamma field remained below 1 MeV. When exposed in the Silene reactor simulating a criticality accident (10(17) fissions-liquid 235U--e.g. 1 Gy neutron and 1 Gy photon), the dosemeter exhibited good correlation with reference values and other measurement technologies (again to within 30%), for both neutron and gamma absorbed dose.  相似文献   

12.
Since 1993, the Institute for Radiological Protection and Nuclear Safety (IRSN) has lead, in association with Electricité de France (EDF), a R&D study of a neutron personal electronic dosemeter. This dosemeter, called 'Saphydose-N', is manufactured by the SAPHYMO company. This paper presents first the optimisation of some detector components using Monte Carlo calculations, and second the test of the manufactured Saphydose-N under radiation following the IEC 1323 standard's recommendations for active personal neutron dosemeters. The measurements with the manufactured dosemeter were performed on the one hand at PTB (Physikalisch-Technische Bundesanstalt) in mono-energetic neutron fields and, on the other hand at IRSN in neutron fields generated by a thermal facility (SIGMA), radionuclide ISO sources and a realistic spectrum (CANEL/T400). The manufactured dosemeter Saphydose-N was also tested during measurement campaigns of the European programme EVIDOS ('Evaluation of Individual Dosimetry in Mixed Neutron and Photon Radiation Fields') at different nuclear workplaces. The study showed that Saphydose-N complies with the recommendations of standard IEC 1323 and can be used at any workplace with no previous knowledge of the neutron field characteristics.  相似文献   

13.
EVIDOS is an EC sponsored project that aims at an evaluation and improvement of radiation protection dosimetry in mixed neutron/photon fields. This is performed through spectrometric and dosimetric investigations during different measurement campaigns in representative workplaces of the nuclear industry. The performance of routine and, in particular, novel personal dosemeters and survey instruments is tested in selected workplace fields. Reference values for the dose equivalent quantities, H(*)(10) and H(p)(10) and the effective dose E, are determined using different spectrometers that provide the energy distribution of the neutron fluence and using newly developed devices that determine the energy and directional distribution of the neutron fluence. The EVIDOS project has passed the mid-term, and three measurement campaigns have been performed. This paper will give an overview and some new results from the third campaign that was held in Mol (Belgium), around the research reactor VENUS and in the MOX producing plant of Belgonucléaire.  相似文献   

14.
During 2000 a trial performance test for individual monitoring services in Europe was organised by the European Radiation Dosimetry Group (EURADOS), covering whole-body beta/photon, whole-body neutron and extremity beta/photon dosimetry for both monoenergetic and simulated workplace fields. The UK National Radiological Protection Board (NRPB), which supplies routine dosemeters to some 50,000 wearers in the UK and overseas, participated in this trial performance test. This paper presents the results obtained for the NRPB whole-body TLD, neutron (PADC) and extremity dosimetry services and comments on their performance in comparison with the overall results.  相似文献   

15.
This paper reports on the results of a neutron trial performance test sponsored by the European Commission and organised by EURADOS. As anticipated, neutron dosimetry results were very dependent on the dosemeter type and the dose calculation algorithm. Fast neutron fields were generally well measured, but particular problems were noted in the determination of intermediate energy fields and large incident angles, demonstrating the difficulties of neutron personal dosimetry. Of particular concern from a radiological protection point of view was the large number of results underestimating personal dose equivalent. A considerable over-response was noted in a few cases.  相似文献   

16.
Within the framework of the EURADOS Action entitled Harmonisation and Dosimetric Quality Assurance in Individual Monitoring for External Radiation, trial performance tests for whole-body and extremity personal dosemeters were carried out. Photon, beta and neutron dosemeters were considered. This paper summarises the results of the whole-body photon dosemeter test. Twenty-six dosimetry services from all EU Member States and Switzerland participated. Twelve different radiation fields were used to simulate various workplace irradiation fields. Dose values from 0.4 mSv to 80 mSv were chosen. From 312 single results, 26 fell outside the limits of the trumpet curve and 32 were outside the range 1/1.5 to 1.5. Most outliers resulted from high energy R-F irradiations without electronic equilibrium. These fields are not routinely encountered by many of the participating dosimetry services. If the results for this field are excluded, most participating services satisfied the evaluation criteria.  相似文献   

17.
The availability of active neutron personal dosemeters has made real time monitoring of neutron doses possible. This has obvious benefits, but is only of any real assistance if the dose assessments made are of sufficient accuracy and reliability. Preliminary assessments of the performance of active neutron dosemeters can be made in calibration facilities, but these can never replicate the conditions under which the dosemeter is used in the workplace. Consequently, it is necessary to assess their performance in the workplace, which requires the field in the workplace to be fully characterised in terms of the energy and direction dependence of the fluence. This paper presents an overview of developments in workplace neutron dosimetry but concentrates on the outcomes of the EVIDOS project, which has made significant advances in the characterisation of workplace fields and the analysis of dosemeter responses in those fields.  相似文献   

18.
The response of a TLD-600/TLD-700 area dosemeter has been characterized in neutron fields around the 590 MeV cyclotron ring at the Paul Scherrer Institute (PSI). The dosemeter is based on a cylindrical paraffin moderator with three of each type of TLD chip at the centre, and is intended to use for area monitoring around accelerator facilities. The dosemeter is calibrated in terms of ambient dose equivalent using a non-moderated 252Cf neutron source. The ambient dose equivalent response has been tested in five locations where the neutron fields and dose rates have been well characterized by Bonner sphere spectrometer and active neutron monitor measurements. The different spectrum shapes and dose rates in the five locations permit the comparison of the behavior of the active and passive dosemeters in these neutron fields.  相似文献   

19.
The results obtained in different international intercomparisons on passive radon monitors have been analysed with the aim of identifying a suitable radon monitoring device for workplaces. From this analysis, the passive radon device, first developed for personal dosimetry in mines by the National Radiation Protection Board, UK (NRPB), has shown the most suitable set of characteristics. This radon monitor consists of a diffusion chamber, made of conductive plastic with less than 2 cm height, containing a CR-39 film (Columbia Resin 1939), as track detector. Radon detectors in workplaces may be exposed only during the working hours, thus requiring the storage of the detectors in low-radon zones when not exposed. This paper describes how this problem can be solved. Since track detectors are also efficient neutron dosemeters, care should be taken when radon monitors are used in workplaces, where they may he exposed to neutrons, such as on high altitude mountains, in the surroundings of high energy X ray facilities (where neutrons are produced by (gamma, n) reactions) or around high energy particle accelerators. To this end, the response of these passive radon monitors to high energy neutron fields has been investigated.  相似文献   

20.
Ionisation chambers are sensitive to both neutrons and photons. In order to produce a neutron dosemeter based on an ion chamber a double-chamber system which allows for differential readings has to be built. The system consists of one chamber with high neutron sensitivity (e.g. A-150 or polyethylene with 10B or 6Li compounds) and one chamber with low neutron sensitivity (e.g. graphite or Teflon). Different combined dosemeter prototypes were produced and their responses for standard photon and neutron radiation fields, as well as various field spectra, were determined. The feasibility of neutron dosimetry with ion chambers and direct ion storage (DIS) electronics has been proved. The results obtained with prototype dosemeters indicate the system's promising potential for legal approval in the future. Apart from dosimetric properties, the advantages of the system are its small size and weight, easy readout and relatively low production cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号