首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hollow microspheres of hematite (α-Fe2O3) were prepared by a simple hydrothermal treatment of ferrous ammonium sulphate hexahydrate ((NH4)2Fe(SO4)2·6H2O) aqueous solution without any surfactants and additives at 180–200 °C. The products were characterized by XRD, FE-SEM and TEM. The results show that α-Fe2O3 hollow microspheres are about 1 μm in diameters and are composed of α-Fe2O3 nanoparticles with a diameter range from 50 nm to 150 nm. The effects of reaction parameters such as reaction time, temperature and [(NH4)2Fe(SO4)2·6H2O] on the morphology of the final product were investigated. A potential formation mechanism of α-Fe2O3 hollow microspheres was also proposed, where the intermediate, urchin-like goethite, served as a sacrificial template for the formation of hollow structure. The reaction parameters-depended morphologies of the final products consisted well with the proposed formation mechanism.  相似文献   

2.
A feasibility study on the incorporation of cobalt into α-Fe2O3 nanorods (NRs) during hydrothermal synthesis (HS) is presented as a function of FeCl3 and CoCl2 concentration, phosphate surfactant concentration and pH value, with samples assessed using X-ray diffractometry, transmission electron microscopy, selected area electron diffraction and energy dispersive X-ray analysis. No evidence was found for the incorporation of cobalt into α-Fe2O3 NRs at low pH, whilst synthesis at intermediate and high pH values favoured the formation of CoFe2O4 NPs. The critical role of pH value over the precipitation, size and phase purity of the nanostructured reaction products is emphasised. At pH ~2, large, well crystalline α-Fe2O3 nanoparticles (NPs) and NRs were grown from FeCl3 solution in the absence and presence of phosphate, respectively, whilst no evidence was found for Co precipitation or incorporation in α-Fe2O3 following HS in the presence of CoCl2. At pH ~8, smaller α-Fe2O3 NPs, as well as Co3O4 and CoFe2O4 NPs were synthesised from FeCl3, CoCl2, or a mixture thereof. HS at pH ~12 produced a mixture of larger CoFe2O4 NPs and α-Fe2O3 NPs depending on the Fe:Co molar ratio. The formation of intermediate metastable (oxy)hydroxide phases is considered pH dependent, providing for a variety of different reaction pathways. Further, inclusion of preformed Co3O4 and CoFe2O4 NPs to the FeCl3 solution at pH ~2 in the presence of phosphate surfactant resulted in the synthesis of α-Fe2O3 NRs with residual Co3O4 and CoFe2O4 NPs attached to their surfaces. The CoFe2O4 NPs encouraged local dissolution leading to the formation of α-Fe2O3 NR surface corrugations.  相似文献   

3.
CuO/Fe2O3 hollow hybrid spheres with the size of 3–5 μm were successfully synthesized by a convenient hydrothermal method, using FeSO4·7H2O and CuSO4·5H2O as the starting materials and urea as the homogeneous precipitant. The samples were characterized by XRD, TEM, ED, SEM, EDX, IR and XPS measurements. XRD and XPS analyses indicated that the nanostructured materials consisted of CuO and α-Fe2O3. TEM and SEM measurements showed that the morphology of binary metal oxide was in the shape of hollow sphere. Careful observation from SEM measurements could find that CuO/Fe2O3 hollow microsphere shell was composed of uniform and dense metal oxide nanorods with about 20–40 nm in diameter and 100–200 nm in length. Moreover, the influence of calcination temperature on the thermal stability of the hollow structures was investigated. It showed that the hollow structure was stable after being calcined at 300 °C for 2 h. The formation mechanism of the CuO/Fe2O3 hollow spheres under hydrothermal condition was discussed.  相似文献   

4.
A simple, cost-effective hydrothermal technique was used in this study to successfully fabricate hollow α-Fe2O3 microspheres, using only fructose and anhydrous ferric chloride without any organic solvent or additive. The synthesized α-Fe2O3 hollow microspheres were characterized by X-ray diffraction spectroscopy (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR). Based on the results, the shell was composed of aggregated α-Fe2O3 nanoparticles, while the fructose-derived carbon core was decomposed during calcination, leaving a hollow interior. XRD analysis confirmed the presence of the α-phase and the absence of γ-phase Fe2O3. A mean diameter of 595 nm was estimated for the microspheres by the Gaussian fit of the histogram constructed from the diameters measured over the SEM images. EDX spectrum of the sample showed signals attributed to Fe and O, and a homogenous distribution of these elements was confirmed by elemental mapping studies. ATR-FTIR analysis confirmed the bending and stretching vibration modes of the Fe-O bond. TGA-DTA data depicted that thermal stability of α-Fe2O3 hollow microsphere was achieved at 480 °C and no weight loss was observed up to 1000 °C. High-temperature calcination results showed that the material can maintain its hollow morphology up to 700 °C. This material has potential applications in drug delivery, gas sensing, and lithium storage.  相似文献   

5.
In this work, a novel method of producing maghemite (γ-Fe2O3) nanopowders has been developed, which can be performed by the direct thermal decomposition of an Fe–urea complex ([Fe(CON2H4)6](NO3)3) in a single step. The reaction mechanism, particle morphology, and the magnetic properties of the γ-Fe2O3 nanopowders have been studied by using thermogravimetric (TG), differential scanning calorimetry (DSC), fourier transformed infrared (FTIR) spectroscopy, elemental analysis, X-ray powder diffraction (XRD), transmission electron micrograph (TEM) observations, and magnetic measurements. Thermal analyses together with the results of XRD show that the formation of γ-Fe2O3 occurs at ~200 °C through a two-stage thermal decomposition of the [Fe(CON2H4)6](NO3)3 complex. The resulting iron oxide phases (i.e., γ-Fe2O3 and α-Fe2O3) are strongly dependent on the synthesis conditions of the [Fe(CON2H4)6](NO3)3. When the molar ratio of Fe(NO3)3 · 9H2O to CON2H4 that is used for the synthesis of [Fe(CON2H4)6](NO3)3 is 1:6 (i.e., molar ratio in stoichiometry), a mixed phase of γ-Fe2O3 and α-Fe2O3 is formed. When the molar ratio is 1:6.2 (i.e., using an excess CON2H4), on the other hand, a pure γ-Fe2O3 is obtained. Magnetic measurements show that resulting nanopowders exhibit a ferromagnetic characteristic and their maximum saturation magnetization increases from 47.2 to 67.4 emu/g with an increase in the molar ratio of Fe(NO3)3 · 9H2O to CON2H4 from 1:6 to 1:6.2.  相似文献   

6.
Polyhedral nanocrystals of α-Fe2O3 are successfully synthesized by annealing FeCl3 on silicon substrate at 1000 °C in the presence of H2 gas diluted with argon (Ar). Uniformly shaped polyhedral nanoparticles (diameter ~ 50-100 nm) are observed at 1000 °C and gases flow rate such as; Ar = 200 ml/min and H2 = 150 ml/min. Non-uniform shaped nanoparticles (diameter ~ 20-70 nm) are also observed at an annealing temperature of 950 °C with lower gases flow rate (Ar = 100 ml/min and H2 = 75 ml/min). Nanoparticles are characterized in detail by field-emission electron microscopy (FE-SEM), energy dispersive X-ray (EDX) and high resolution transmission electron microscopy (HRTEM) techniques. HRTEM study shows well resolved (110) fringes corresponding to α-Fe2O3, and selected area diffraction pattern (SADP) confirms the crystalline nature of α-Fe2O3 polyhedral nanoparticles. It is observed that polyhedral formation of α-Fe2O3 nanocrystals depends upon annealing temperature and the surface morphology highly rely on the gas flow rate inside the reaction chamber.  相似文献   

7.
Iron(II) carboxylato-hydrazinates: Ferrous fumarato-hydrazinate (FFH), FeC4H2O4·2N2H4; ferrous succinato-hydrazinate (FSH), FeC4H4O4·2N2H4; ferrous maleato-hydrazinate (FEH), FeC4H2O4·2N2H4; ferrous malato-hydrazinate (FLH), Fein4H4O5·2N2H4; ferrous malonato-hydrazinate (FMH), FeC3H2O4·1.5N2H4·H2O; and ferrous tartrato-hydrazinate (FTH), FeC4H4O6·N2H4·H2O are being synthesized for the first time. These decompose (autocatalytically) in an ordinary atmosphere to mainly γ-Fe2O3, while the unhydrazinated iron(II) carboxylates in air yield α-Fe2O3, but the controlled atmosphere of moisture requires for the oxalates to stabilize the metastable γ-Fe2O3. The hydrazine released during heating reacts with atmospheric oxygen liberating enormous energy, N2H4 + O2 → N2 + H2O; ΔH2O = −621 kJ/mol, which enables to oxidatively decompose the dehydrazinated complex to γ-Fe2O3. The reaction products N2 + H2O provide the necessary atmosphere of moisture needed for the stabilization of the metastable oxide. The synthesis, characterization and thermal decomposition (DTA/TG) of the iron(II) carboxylato-hydrazinates are discussed to explain the suitability of γ-Fe2O3 in the ferrite synthesis.  相似文献   

8.
α- Fe2O3 nanoparticles have been synthesized by gel evaporation method in air at 300°C. The average size of as synthesized α-Fe2O3 nanoparticle was estimated to be 30 nm and the particles were of good crystalline nature. Shape of the nanoparticles were slightly deviated from spherical which is attributed to the asymmetric growth of primary nuclei. MicroRaman and X-ray diffraction results have shown mixed phases of α-Fe2O3 and γ-Fe2O3. However, the α-Fe2O3 phase is more predominant than γ-Fe2O3 due to the incomplete nucleation of α-Fe2O3 particles at the size of 30 nm. The vibrating sample magnetometer measurement shows that the nanoparticles possess ferromagnetic property.  相似文献   

9.
The influence of long-term milling of a mixture of (1) MgO and α-Fe2O3, (2) MgCO3, and α-Fe2O3, and (3) Mg(OH)2 and α-Fe2O3 powders in a planetary ball mill on the reaction synthesis of nanosized MgFe2O4 ferrites was studied. Mechanochemical reaction leading to formation of the MgFe2O4 spinel phase was followed by electron microscopy, (SEM and TEM), X-ray diffraction and magnetization measurements. The spinel phase was observed first in cases (1) and (2) after 5 h of milling, and its formation was observed in all cases after 10 h. The synthesized MgFe2O4 ferrite has a nanocrystalline structure with a crystallite size of about 11, 10, and 12 nm, respectively for cases (1)–(3). Magnetic measurements after 10 h of milling show magnetization values of 19.8 J/(Tkg), 23.5 J/(Tkg) and 13.8 J/(Tkg), respectively for the cases (1)–(3).  相似文献   

10.
Iron oxyhydroxides and hydroxides were synthesized from chemically beneficiated high SiO2/Al2O3 low-grade iron ore (57.49% Fe2O3) rejects and heated to get iron oxides of 96–99.73% purity. The infrared band positions, isothermal weight loss and thermogravimetric and chemical analysis established the chemical formulas of iron-oxyhydroxides as γ-FeOOH.0.3H2O; α-FeOOH.0.2H2O and amorphous FeOOH. The thermal products of all these were α-Fe2O3 excepting that of γ-FeOOH.0.3H2O which gave mainly γ-Fe2O3 and some admixture of α-Fe2O3. The hydrazinated iron hydroxides and oxyhydroxides, on the other hand, decomposed autocatalytically to mainly γ-Fe2O3. Hydrazine method modifies the thermal decomposition path of the hydroxides. The saturation magnetization,J s, values were found to be in the range 60–71 emu g−1 which are close to the reported values for γ-Fe2O3. Mechanism of the γ-Fe2O3 formation by hydrazine method is discussed.  相似文献   

11.
《Materials Letters》2007,61(23-24):4447-4451
Iron oxide nanoparticles in the interval of 4–43 nm were synthesized by a colloidal method at room temperature, without use of surfactants and using precursors like FeCl3·6H2O and FeCl2·4H2O; deionizated water free of dissolved oxygen and ammonia solution (29% vol.) and using several aging times (2, 5 and 10 min). A detailed study by X- ray diffraction (XRD), Conventional Transmission Electron Microscopy (CTEM), High-Resolution Transmission Electron Microscopy (HRTEM) and electron diffraction patterns showed that with a reaction time less than 5 min nanoparticles of magnetite phase (Fe3O4) were synthesized, and with a bigger time of reaction the lepidocrocite phase (FeO(OH)) was identified. The minor particle average size measured was 6 nm in the sample, 0.0125 M with 2 min of aging time (0.0125M2 m). In addition it was possible to obtain a narrow nanoparticle size dispersion from 4 to 10 nm for small aging times.  相似文献   

12.
Hematite solid spindles and hollow spindles have been selectively synthesized by a template-free, economical hydrothermal method, using FeCl3·6H2O as the starting materials and NaOH as the homogeneous precipitant. XRD analyses indicated that the products consisted of α-Fe2O3. SEM and TEM measurements showed that the morphologies of products were in the shape of solid spindles and hollow spindles, respectively. A possible formation process based on the nucleation-oriented aggregation-recrystallization mechanism is proposed. Moreover, the as-prepared hollow spindle-like α-Fe2O3 exhibits a good response and reversibility to some organic gas, such as 2-propanol and acetone. Compared with other hematite nanostructures, the porous hollow hematite spindles show outstanding performance in gas sensing due to their large surface area and porous hollow structure. Because of the unique porous hollow structures of the samples, the photocatalytic property of the spindle-like α-Fe2O3 was also investigated.  相似文献   

13.
Monodispersed hexagonal Al2−x Cr x O3 nanodisks are synthesized through a reactive doping of Cr6+ cations in a hydrogenated mesoporous AlO(OH)·αH2O powder followed by annealing at 1,200 °C in air. The reaction was carried out by a drop wise addition of an aqueous Cr6+ solution (0.5–1.0 M) to AlO(OH)·αH2O, at room temperature. Al2−x Cr x O3 nanostructure formation was controlled by the nucleation and growth from the intermediate amorphous mesoporous Cr4+:Al2O3 composites in the temperature range 400–1,000 °C. The nanodisks of ∼50 nm diameter and thickness of ∼16 nm is observed in the sample with x of 0.2 and similar nanodisks with a low dimension is observed at a higher value of x of 1.6 (after 2 h of heating at 1,200 °C). The Cr3+ ↔ Al3+ substitution, x ≤ 1.2, inhibits grain growth in small crystallites. The crystallites in x = 0.2 composition have 43 nm diameter while it is 15 nm in those with x = 1.2 composition.  相似文献   

14.
Ultrafine spherical Fe2O3 powders with controllable morphology and crystal phase were synthesized by ultrasonic spray pyrolysis. In this experiment, we chose three common ferric salts (Fe(NO3)3·9H2O, FeSO4·7H2O or FeCl2·4H2O) as precursor solution and regulated the concentration of chlorine ion (Cl?) in precursor solution to produce Fe2O3 particles. The morphology, crystal structure and magnetic property of prepared Fe2O3 particles were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Vibrating sample magnetometer (VSM). The diameter of the obtained Fe2O3 products ranged from 0.2 to 2?μm. And the product obtained from FeCl2 precursor solution was magnetic, which was composed of hexagonal α-Fe2O3 and cubic γ-Fe2O3 from XRD results. We also calculated the weight percent of α-Fe2O3 and γ-Fe2O3 in the product through XRD quantitative analysis. However, with the addition of Cl? in Fe(NO3)3 or FeSO4 precursor solution, the products turned from non-magnetic to magnetic, whose pure α-Fe2O3 phase became to α-Fe2O3 and γ-Fe2O3 multi-phase. Besides, the weight percent of γ-Fe2O3 and the amount of Ms increased with the Cl? concentration in precursor solution improving. According to the research, it can be inferred that the presence of Cl? inhibits the phase transition of γ-Fe2O3 to α-Fe2O3 at high temperature.  相似文献   

15.
Orthorhombic (α-) and cubic (β-) PbF2 have been successfully synthesized via a simple hydrothermal process at 200 °C for 8 h using Pb(C2H3O)2 and NH4F as the raw reaction materials. The crystal structure, morphology, and optical properties of the as-synthesized samples were characterized by X-ray powder diffraction, scanning electron microscopy, and photoluminescence spectroscopy. XRD and SEM results show that the uniform β-PbF2 microspheres and porous-microspheres with the average diameter about 3 and 5 μm, respectively, were synthesized assisting with citric acid and α-PbF2 microrods and microtubes with a diameter about 15 and 10 μm, respectively, were synthesized assisting with acetic acid. The reaction conditions influencing the synthesis of these PbF2 microstructures, such as reaction time, the amount of CTAB, and the molar ratio of F/Pb were investigated. On the basis of a series of observations, phenomenological elucidation of a mechanism for the growth of the β-PbF2 microspheres and multispheres has been presented. Room-temperature photoluminescence measurements indicated that the as-prepared α-PbF2 microrods exhibit a strong green emission.  相似文献   

16.
Hollow α-Fe2O3 irregular microspheres were prepared at 160 °C from a hydrolyzing Fe(ClO4)3 solution by adding sodium polyanethol sulphonate. The particles were characterized by 57Fe Mössbauer, X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy. The walls of these hollow particles consisted of elongated subunits composed of elongated and thin α-Fe2O3 rods. The precipitation of hollow α-Fe2O3 irregular microspheres was governed by the preferential adsorption of sulphonate/sulphate groups. The lateral aggregation of elongated thin rods and subunits also played an important role in the formation of hollow α-Fe2O3 irregular microspheres.  相似文献   

17.
《Materials Research Bulletin》2006,41(6):1192-1198
Submicrometer-sized hollow hematite particles were prepared through a surfactant-assisted solvothermal process. The amount of FeCl3·H2O and cetyltrimethylammonium bromide, and the acidity of the solution were systematically altered to study their effects on the final results. Hollow hematite particles with shapes from sphere, ellipsoid to peanut were obtained. Their sizes range from 500 nm to 2 μm with shell thickness from 100 to 500 nm. Powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy and selected area electron diffraction were applied to investigate the products’ crystallinity, purity, morphology, size and structural features. Finally, the study on the photocatalysis of Fe2O3 for the destruction of diethyl phthalate in water was carried out. The result proved that Fe2O3 hollow particles were effective photocatalysts for the degradation of DEP, with 96.8% destruction ratio being obtained within 60 min.  相似文献   

18.
Hollow hydroxyapatite (HA) microspheres were prepared by reacting solid microspheres of Li2O–CaO–B2O3 glass (106–150 μm) in K2HPO4 solution, and evaluated as a controlled delivery device for a model protein, bovine serum albumin (BSA). Reaction of the glass microspheres for 2 days in 0.02 M K2HPO4 solution (pH = 9) at 37°C resulted in the formation of biocompatible HA microspheres with a hollow core diameter equal to 0.6 the external diameter, high surface area (~100 m2/g), and a mesoporous shell wall (pore size ≈13 nm). After loading with a solution of BSA in phosphate-buffered saline (PBS) (5 mg BSA/ml), the release kinetics of BSA from the HA microspheres into a PBS medium were measured using a micro bicinchoninic acid (BCA) protein assay. Release of BSA initially increased linearly with time, but almost ceased after 24–48 h. Modification of the BSA release kinetics was achieved by modifying the microstructure of the as-prepared HA microspheres using a controlled heat treatment (1–24 h at 600–900°C). Sustained release of BSA was achieved over 7–14 days from HA microspheres heated for 5 h at 600°C. The amount of BSA released at a given time was dependent on the concentration of BSA initially loaded into the HA microspheres. These hollow HA microspheres could provide a novel inorganic device for controlled local delivery of proteins and drugs.  相似文献   

19.
Novel hematite (α-Fe2O3) hollow spheres were prepared through a surfactant-assisted solvothermal process. The XRD, SEM and TEM characterization data confirm that the formation of α-Fe2O3 hollow spheres exhibits waxberry-like architectures with spindle nanoparticles, the length in the range of 150-400 nm, as building block. Their tips of these nanoparticles were concentrated on a center. The sizes of α-Fe2O3 waxberry are less than 3 µm. They possess good photocatalytic properties when used for the degradation of salicylic acid in water. The formation mechanism of α-Fe2O3 waxberry is also discussed.  相似文献   

20.
《Materials Letters》2007,61(23-24):4452-4455
Submicrometer-sized hollow Eu2O3 spheres with a shell thickness of about 75 nm and inner diameter about 690 nm have been synthesized through a sol–gel method using PS/PE microspheres as templates. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), Field emission scanning electron microscopy (FESEM), and photoluminescence (PL) spectroscopy have been used for the characterization of the obtained hollow Eu2O3 spheres. The PL peak is obviously broadened compared with that of bulk Eu2O3. The mechanism of the formation of the hollow Eu2O3 spheres was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号