首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Road ice and snow melting based on low temperature geothermal tail water is of significance to realize energy cascading utilization. A small scale ice and snow melting system is built in this work. Experiments of dynamic melting processes of crushed ice, solid ice, artificial snow and natural snow are conducted on concrete pavement. The results show that the melting process of ice and snow includes three phases: a starting period, a linear period and an accelerated period. The critical value of the snow free area ratio between the linear period and the accelerated period is about 0.6. The physical properties of ice and snow, linked with ambient conditions, have an obvious effect on the melting process. The difference of melting velocity and melting time between ice and snow is compared. To reduce energy consumption, the formation of ice on roads should be avoided if possible. The idling process is an effective pathway to improve the performance of melting systems. It is feasible to utilize geothermal tail water of about 40 °C for melting ice and snow on winter roads, and it is unnecessary to keep too high fluid temperatures during the practical design and applications. Besides, with the exception of solid ice, the density and porosity of snow and ice tend to be decreasing and increasing, respectively, as the ambient temperature decreases.  相似文献   

2.
In this paper, the results of year round thermal performance of collector of semi-cylindrical solar tunnel dryers (STD) has been presented. The calculations have been made under natural circulation and forced circulation mode. The day-long average of solar irradiance, ambient temperature, rise in the inlet air temperature, natural circulation volume flow rates, and collector efficiency have been calculated for each month of the year. The effect of collector length, cover radius, collector inclination with horizontal have been made for rise in inlet air temperature, volume flow rate and for the efficiency. All calculations have been made for Delhi climate. © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
Zero or low‐carbon buildings can be achieved through novel technology solutions and integrating renewable energy into the buildings. One method of reducing the fossil fuel dependency of buildings and limiting greenhouse gas emissions is integrating the solar thermal system into the built environment. Recently, transpired solar collector has been identified as 1 of the most efficient solar thermal conversion technologies where a very high efficiency can be achieved. The proposed review paper investigates the performance of transpired solar collectors (TSCs) and discusses the relevant case studies in this context. This paper introduces the background and concept of TSCs. It mainly focuses on the study of parametric dependency of the performance of TSCs. The paper also investigates various mathematical models, experimental study, and numerical simulations particularly CFD used for TSC performance analysis. This proposed paper concluded that wind speed and airflow rate are the most dominant factor in TSC performance but solar irradiation, hole diameter, hole geometry, and pitch size have limited effect on TSC performance; also, profile with longer pitch tends to lower the collector efficiency and heat transfer coefficient. However, profile with shorter pitch tends to reduce the wind effect.  相似文献   

4.
分析了影响太阳能吸收式空调系统集热面积的因素;得出系统集热面积单耗的日逐时值;根据太阳能吸收式空调系统特点,提出了一种确定集热器集热面积的新方法,并以2级吸收式太阳能空调系统为例进行了详细阐述.分析结果表明,为减少集热面积,优化系统,须对太阳能空调系统增设蓄热装置.太阳能吸收式空调运行在8:00~18:00时,系统所需的最小集热面积单耗为1.085 m2/m2,其对应的蓄热器的容积单耗为0.036 3m3/m2,且随着太阳能空调运行时间的缩短,最小集热面积单耗减小,蓄热器容积单耗增加.  相似文献   

5.
The main objective of this work is the investigation and improvement of thermal performance of evacuated CPC (Compound Parabolic Concentrator) solar collector with a cylindrical absorber. Modified types of this solar collector are always combined with the evacuated glass envelop or tracking system. The conventional stationary CPC solar collector has been compared with the single axis tracking CPC solar collector in outlet temperature, net heat flux onto the absorber and thermal efficiency. Numerical model has been analyzed based on the irradiation determined actually and the results have been calculated to predict the thermal efficiency. Based on the comparison of the measured and calculated results, it is concluded that the numerical model can accurately estimate the performance of solar collectors. The result shows the thermal efficiency of the tracking CPC solar collector is more stable and about 14.9% higher than that of the stationary CPC solar collector.  相似文献   

6.
集热器是太阳能热风发电系统的重要组成部分.文章建立了集热器的热物理模型,分析了集热器各部分的传热过程和集热器效率的计算方法.介绍了集热器热损失的求解方法,即利用热阻法求解和根据经验公式求解.  相似文献   

7.
Experimental measurements to determine conditions necessary for efficient solar desalination are given. The effects on performance of using various different absorber materials together with the integration of flat-plate collectors with storage systems in basin type solar stills are investigated. Correlations between daily yield (Y, in litres) and solar insolation (I, in MJ/m2day) are found to be, Y = 0.152I − 0.706 (for black-paint absorbers), Y = 0.180I − 0.987 (for charcoal absorbers), Y = 0.225I − 0.467 (for integrated solar collector and storage system, with black-paint absorbers). The calculated daily-average monthly yields for each case are also given.  相似文献   

8.
U型管式全玻璃真空管集热器热效率及性能研究   总被引:1,自引:0,他引:1  
田琦 《能源工程》2006,(6):36-40
在能量平衡分析的基础上,建立了U型管式全玻璃真空管太阳能集热器热效率方程,推导了集热器热损系数、效率因子等性能参数的计算公式,理论计算热效率与实验数据吻合良好。计算分析表明,真空管热损系数与吸热管和环境温差并非线性关系,将其关联式按环境温度分段整理将使计算结果更接近实际;涂层发射比对集热器的热效率影响较大,降低涂层发射比是提高集热器效率的有效途径;采取适当的措施降低吸热管与肋片间的接触热阻后,采用U型管连接方式不会时热利用系统集热器效率造成太大影响。  相似文献   

9.
Most solar collectors commonly used are of the flat-plate type. In the present work, a novel type of solar collector, namely, spherical collector, is proposed. It consists of a stationary spherical body with a cover and an absorbing surface. The receiving hemisphere, normal to the incident beam radiation, keeps on shifting with the apparent position of the sun. The main advantage of this type of collector is its ability to effectively track the sun, without any actual mechanical movement. Both daily and hourly variations of incident radiation on such a spherical solar collector are calculated on the basis of available data. The results are compared with that on an equivalent flat-plate collector for different angles of tilt and latitude. From the results, the spherical collectors are found to be more effective in receiving solar radiation over equivalent flat-plate counterparts throughout the year.  相似文献   

10.
构建表面积为1.50 m×1.50 m的小型实验用盐梯度太阳池,并与平板太阳能集热器配合使用,分别对普通太阳池和集热增强型太阳池进行了储热、放热实验。实验研究与理论分析表明:单独盐梯度太阳池的放热量为3.5×103k J,热效率为13.6%;集热增强型太阳池放热量可以达到4.8×103k J,且热效率增至28.1%。另外后者下对流层温度最高可提升10℃以上,从而证明太阳能集热器可以有效提高太阳池热效率,增加下对流层储热量。此外,考虑了放热过程换热器对太阳池下对流层的扰动,对比实验前后的溶液浓度,可以看出实验后太阳池盐度曲线合理,非对流层呈良好梯度分布,太阳池稳定性并未遭到破坏。  相似文献   

11.
Investigation on generated power of thermoelectric roof solar collector   总被引:1,自引:0,他引:1  
The aim of this paper was to conduct lab-scale investigation of a new roof design concept termed “the thermoelectric roof solar collector (TE-RSC)” for power generation using solar energy. The TE-RSC was composed of a transparent acrylic sheet, air gap, a copper plate, thermoelectric modules and a rectangular fin heat sink. The incident solar radiation heats up the copper plate so that a temperature difference is created between the TE module that generates a direct current. This current generated was used to run a fan for cooling the TE modules. The TE-RSC surface area was 0.0525 m2 and 10 thermoelectric cooling modules (Tianjin Lantian model TEC1-12708) were used. Investigations were done by varying solar radiation, simulated by using a halogen lamp, between 400 and 1000 W/m2.It was found that this new roof design can generate about 1.2 W under solar radiation intensity of about 800 W/m2 at ambient temperature varying between 30 and 35 °C. The corresponding air velocity generated by the ventilation fan was about 1.7 m/s. Therefore, the proposed TE-RSC concept seems to be an interesting new alternative for various purposes such as power generation in remote areas, roof heat gain reduction and indoor ventilation of spaces.  相似文献   

12.
Y.B. Tao 《Solar Energy》2010,84(10):1863-1872
A unified two-dimensional numerical model was developed for the coupled heat transfer process in parabolic solar collector tube, which includes nature convection, forced convection, heat conduction and fluid-solid conjugate problem. The effects of Rayleigh number (Ra), tube diameter ratio and thermal conductivity of the tube wall on the heat transfer and fluid flow performance were numerically analyzed. The distributions of flow field, temperature field, local Nu and local temperature gradient were examined. The results show that when Ra is larger than 105, the effects of nature convection must be taken into account. With the increase of tube diameter ratio, the Nusselt number in inner tube (Nu1) increases and the Nusselt number in annuli space (Nu2) decreases. With the increase of tube wall thermal conductivity, Nu1 decreases and Nu2 increases. When thermal conductivity is larger than 200 W/(m K), it would have little effects on Nu and average temperatures. Due to the effect of the nature convection, along the circumferential direction (from top to down), the temperature in the cross-section decreases and the temperature gradient on inner tube surface increases at first. Then, the temperature and temperature gradients would present a converse variation at θ near π. The local Nu on inner tube outer surface increases along circumferential direction until it reaches a maximum value then it decreases again.  相似文献   

13.
A computer-based numerical model has been developed utilising ray trace techniques, to simulate the optical characteristics of asymmetric inverted absorber line axis compound parabolic concentrating solar collectors (IACPCs). Cognisance is taken of the separate effects of the beam and diffuse properties of the total insolation on the optical performance. Increasing absorber gap height was expected to increase convection heat loss suppression and overall collector performance at the expense of a reduction in optical efficiency. The results are presented as graphical analyses of optical efficiency versus height of absorber gap, reflectivity and, acceptance and ray input angles.  相似文献   

14.
The direct-type solar dryer is characterized by very simple construction, less maintenance, cost-effectiveness, and is easy to handle. The present study aims to enhance the performance of a direct-type solar dryer. To achieve this, the photovoltaic (PV) panels with thermal energy recovery and solar air collector were integrated with the direct-type solar dryer. In this study, the PV panels with thermal energy recovery and solar air collector were utilized as preheating units to raise the air temperature before entering the direct solar dryer. Moreover, the PV panels were utilized to drive the air blower. In this study, three incorporated models are suggested to study the performance of the solar dryer integrated with PV panels with thermal energy recovery and solar air collector. The model of each component was validated by the previously recorded empirical data. The results confirmed that the dual utilization of the PV panels with thermal energy recovery and solar air collector as a preheating unit raised the air temperature entering the direct solar dryer by the rate varying between 29°C and 42°C within the period 9:00 a.m.–4:00 p.m. Also, the moisture content of banana samples inside the direct solar dryer reduced from the initial value of 72% (wb) to the value of 33.4% (wb) within 7 h (9:00 a.m.–4:00 p.m.). During this operating period, moisture removal from the banana samples varied between 110 and 400 g/h.  相似文献   

15.
平板太阳能集热器的效率方程和对应的效率曲线是判断集热器热性能的重要依据,前人分别用3个不同方程和3条不同曲线定量地描述了集热器效率.文章阐释了3条曲线的异同点,并提出将3条太阳热水器瞬时效率曲线统一起来的具体解决办法.  相似文献   

16.
This paper presents the thermal performance of a double-pass solar collector with and without porous media in the second or lower channel of the collector. The experimental setup has been designed to study the thermal performance over a range of design and operating conditions. Several important relationships between the design and operating conditions have been obtained. These relationships effect the thermal performance of the double-pass solar collector. The relationships include the effect of changes in upper and lower channel depth on the thermal efficiency with and without porous media. Moreover, the effects of mass flow rate, solar radiation, and temperature rises on the thermal efficiency of the double-pass solar collector have been studied. The study concluded that the presence of porous media in the second channel increases the outlet temperature, therefore increases the thermal efficiency of the systems.  相似文献   

17.
Recently, a solar thermal collector often employs nanoparticle suspension to absorb the solar radiation directly by a working fluid as well as to enhance its thermal performance. The collector efficiency of a direct absorption solar collector (DASC) is very sensitive to optical properties of the working fluid, such as absorption and scattering coefficients. Most of the existing studies have neglected particle scattering by assuming that the size of nanoparticle suspension is much smaller than the wavelength of solar radiation (i.e., Rayleigh scattering is applicable). If the nanoparticle suspension is made of metal, however, the scattering cross-section of metallic nanoparticles could be comparable to their absorption cross-section depending on the particle size, especially when the localized surface plasmon (LSP) is excited. Therefore, for the DASC utilizing a plasmonic nanofluid supporting the LSP, light scattering from metallic particle suspension must be taken into account in the thermal analysis. The present study investigates the scattering effect on the thermal performance of the DASC employing plasmonic nanofluid as a working fluid. In the analysis, the Monte Carlo method is employed to numerically solve the radiative transfer equation considering the volume scattering inside the nanofluid. It is found that the light scattering can improve the collector performance if the scattering coefficient of nanofluid is carefully engineered depending on its value of the absorption coefficient.  相似文献   

18.
In this research, a gamma-type, low-temperature differential (LTD) solar Stirling engine with two cylinders was modeled, constructed and primarily tested. A flat-plate solar collector was employed as an in-built heat source, thus the system design was based on a temperature difference of 80 °C. The principles of thermodynamics as well as Schmidt theory were adapted to use for modeling the engine. To simulate the system some computer programs were written to analyze the models and the optimized parameters of the engine design were determined. The optimized compression ratio was computed to be 12.5 for solar application according to the mean collector temperature of 100 °C and sink temperature of 20 °C. The corresponding theoretical efficiency of the engine for the mentioned designed parameters was calculated to be 0.012 for zero regenerator efficiency. Proposed engine dimensions are as follows: power piston stroke 0.044 m, power piston diameter 0.13 m, displacer stroke 0.055 m and the displacer diameter 0.41 m. Finally, the engine was tested. The results indicated that at mean collector temperature of 110 °C and sink temperature of 25 °C, the engine produced a maximum brake power of 0.27 W at 14 rpm. The mean engine speed was about 30 rpm at solar radiation intensity of 900 W/m2 and without load. The indicated power was computed to be 1.2 W at 30 rpm.  相似文献   

19.
闫敏  邱林  任耿  黄莉  邹越 《节能》2009,28(9):12-14
对一种具有多孔折线型的被动式太阳能集热器的热性能进行实验研究,探讨在受迫奈件下集热器热效率的计算公式。实测过渡季集热器出口温度、进口风速和太阳辐射强度3个参数。通过实验分析,这种折线型太阳能集热器的热效率可达59.4%,并且热效率随进口风速和太阳辐射强度的增加而提高。此外,集热器效率要先于太阳辐射强度达到当天最大值。  相似文献   

20.
Energetic and exergetic performance analyses of flat-plate solar collector using supercritical CO2 have been done in this study. To take care of the sharp change in thermophysical properties in near critical region, the discretisation technique has been used. Effects of zonal ambient temperature and solar radiation, fluid mass flow rate and collector geometry on heat transfer rate, collector efficiency, heat removal factor, irreversibility and second law efficiency are presented. The optimum operating pressure correlation has been established to yield maximum heat transfer coefficient of CO2 for a certain operating temperature. Effect of metrological condition on heat transfer rate and collector efficiency is significant and that on heat removal factor is negligible. Improvement of heat transfer rate is more predominant than increase in irreversibility by using CO2. For the studied ranges, the maximum performance improvement of flat-plate solar collector by using CO2 as the heat transfer fluid was evaluated as 18%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号