首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
考虑惯性力的水基磁流体润滑滑动轴承热弹流润滑分析   总被引:1,自引:0,他引:1  
基于考虑惯性力的雷诺方程,对水基磁流体润滑滑动轴承进行热弹流润滑分析,并与未考虑惯性力的热弹流数值解进行比较。结果表明:水基磁流体在考虑惯性力时,入口区压力和膜厚相应增大,压力峰相应减小;随着载荷的增大,水基磁流体润滑膜的膜厚和入口区压力减小,压力峰增大;随着速度的增大,水基磁流体膜厚和入口区压力增大,而压力峰减小。  相似文献   

2.
不同载液磁流体热弹流润滑性能对比   总被引:4,自引:0,他引:4  
建立磁流体润滑滑动轴承的弹流润滑模型.利用考虑热效应的雷诺方程,用多重网格法对磁流体润滑滑动轴承进行弹流润滑分析.比较不同载液磁流体润滑滑动轴承的润滑膜膜厚和压力分布.通过对比酯基H01磁流体、烃基E03磁流体和水基A01磁流体的润滑膜膜厚和压力,选择水基磁流体做进一步的研究,探究载荷和速度对水基磁流体润滑滑动轴承的润滑膜弹流性能的影响.结果表明:与等温条件下相比,不同载液磁流体润滑膜的压力没有变化,但是磁流体润滑膜的膜厚都减小;在不同转速条件下,水基磁流体润滑膜的入口区压力随着转速增加而增大,膜厚随着转速增加而增厚,压力峰随着转速增加而减小;在不同载荷条件下,水基磁流体润滑膜的入口区压力随着载荷增加而减小,膜厚随着载荷增加而减小,压力峰随着载荷增加而增大.  相似文献   

3.
由于薄壁构件在受力情况下产生挠度变形,对弹流润滑有一定影响,导致原来的弹流润滑计算存在较大误差,经典的接触模型已不再适用。提出一种考虑薄壁平板挠度变形的弹流润滑线接触模型,该模型能够确切反映薄壁平板的挠度变形对弹流润滑的影响;采用有限元仿真软件建立薄壁平板的挠度变形模型,在挠度变形的基础上,分析速度参数及载荷参数对线接触弹流润滑性能的影响。研究结果表明:挠度变形对薄壁件润滑的影响十分明显,油膜压力减小,中心膜厚分布范围增大,膜厚值减小;随着速度及载荷参数发生变化,油膜压力及膜厚也相应地发生改变;当其他条件不变时,中心油膜厚度随速度的增加而增大,且中心油膜区域逐渐增加,速度参数对油膜压力影响较大,油膜压力随着速度的增加而升高,颈缩现象逐渐出现;油膜压力随着载荷的增大而升高,同时油膜厚度逐渐减小。  相似文献   

4.
利用考虑热、磁场、时变和指数率非牛顿效应的雷诺方程,对水基磁流体滑动轴承进行微观弹流润滑分析。对比稳态解与时变解,并探讨速度、载荷对水基磁流体润滑膜压力、膜厚和温度的影响。结果表明:考虑时变效应时水基磁流体的润滑膜的膜厚、压力和温度发生了明显变化,故在实际中不能用稳态解代替时变解;单个粗糙峰的存在,引起了水基磁流体润滑膜的局部最高压力峰和温度峰,由于局部压力峰的存在,使单个粗糙峰被迫压平,膜厚减小;随着速度的增加,水基磁流体润滑膜的压力峰减小,膜厚增大,温度增大;随着载荷的增加,水基磁流体润滑膜的压力峰增大,膜厚减小,温度增大。  相似文献   

5.
史修江  王优强 《轴承》2013,(1):32-35
利用考虑热效应的Reynolds方程,对不同载液磁流体滑动轴承进行热弹流润滑数值分析。探讨了载液和磁粉体积分数对磁流体滑动轴承弹流性能的影响。结果表明:酯基H01磁流体滑动轴承的压力峰最小,膜厚和弹流温度最大;烃基E03磁流体滑动轴承的压力峰最大,膜厚和弹流温度最小;水基A01磁流体滑动轴承的压力峰、膜厚和弹流温度均在前两者之间;随着磁粉体积分数增大,水基磁流体的弹流润滑膜膜厚不断增大,压力无明显变化,弹流温度不断升高。  相似文献   

6.
以柔性轴承为研究对象,基于赫兹接触理论和弹性薄壁圆环理论,建立柔性轴承等温椭圆点接触弹流润滑模型,对滚珠及内外圈滚道的接触区受载荷最大位置处进行弹流润滑数值分析;计算危险点的曲率半径、速度及载荷,分析载荷及速度变化对该位置润滑性能的影响。研究结果表明:套圈变形使得润滑接触区峰值压力增大、膜厚减小;柔性轴承弹流润滑油膜最小膜厚及中心膜厚均随载荷的增大而减小,油膜压力随载荷的增大而变大,表明载荷增大对柔性轴承的承载有一定影响;随转速的增大最小膜厚及中心膜厚均增大,表明在一定范围内,适当提高转速能够改善润滑性能。  相似文献   

7.
利用考虑热、磁场和非牛顿效应的雷诺方程,并且采用多重网格法和多重网格积分法,对指数率非牛顿水基磁流体滑动轴承进行热弹流润滑分析。探讨了非牛顿流体指数、磁场强度、滑滚比和曲率半径对水基磁流体弹流润滑膜膜厚和压力的影响。结果表明:在水基磁流体润滑的条件下,水基磁流体润滑膜厚随着指数的增加而减小,压力随着指数的增加的变化不明显;随着磁场强度和滑动轴承滑滚比的增大,水基磁流体润滑膜的膜厚增大,压力无明显变化;随着滑动轴承曲率半径的增大,水基磁流体润滑膜的膜厚减小,入口区压力增大,压力峰减小。  相似文献   

8.
建立水润滑塑料合金轴承的数学模型,对水润滑条件下塑料合金轴承的弹流润滑问题进行数值模拟,讨论转速和载荷对水润滑膜压力和膜厚的影响。结果表明:在水润滑条件下,转速对水润滑膜的压力影响不明显,而膜厚及最小膜厚随转速的增大而明显增大;随载荷的增大,压力峰值有明显增大,而在入口区压力随载荷增大而减小,膜厚及最小膜厚随载荷增大而减小。  相似文献   

9.
乳化液润滑轧辊轴承的弹流润滑分析   总被引:1,自引:0,他引:1  
建立乳化液润滑轧辊轴承的数学模型,分别在等温和热条件下对乳化液润滑轧辊轴承的弹流润滑问题进行数值模拟,讨论轧制力和转速对乳化液润滑膜压力和膜厚的影响。结果表明:等温条件下,当轧制力一定时,随着转速的增加第二压力峰增大,而膜厚及最小膜厚都增大;随着轧制力的增大,压力峰值有显著增大,但在入口区压力、膜厚及最小膜厚减小。热条件下,随着轧制力增大,膜厚和最小膜厚逐渐减小,而对压力几乎没有影响;随着转速的增大,膜厚和最小膜厚逐渐增大,压力逐渐减小,第二压力峰也逐渐降低甚至消失。  相似文献   

10.
利用考虑惯性力的Reynolds方程,对乳化液润滑条件下复合塑料轴承的弹流润滑问题进行了数值模拟,讨论了载荷、转速和轴承轴径大小对乳化液膜压力和膜厚的影响.结果表明:在乳化液润滑条件下,惯性力对乳化液膜压力的影响很小,而对乳化液膜厚度的影响较大;随着载荷的增大,压力峰值有明显增大,而在入口区压力随载荷增大而减小,膜厚以及最小膜厚随载荷减小而明显增大;转速和轴承轴径大小对乳化液膜压力的影响不明显,而膜厚以及最小膜厚随转速增大而明显增大,随轴承轴径的增大而减小.  相似文献   

11.
建立无限长滚子与平面的线接触等温弹流脂润滑模型,采用多重网格法研究纯滚工况下载荷和卷吸速度对润滑油膜特性的影响;采用多功能双色光弹流润滑油膜测量实验台,在相应工况下进行变载荷和变速度实验研究。数值模拟结果表明,较大的载荷可以获得更大的压力和更小的膜厚,较大的速度则主要提升了二次压力峰并增大了膜厚。实验结果表明:随着载荷的增大,整体膜厚、最小膜厚和中心膜厚均先增大后减小,但载荷较小时出现了最小膜厚和中心膜厚实验值和理论模拟值不一致的变化趋势,这可能是数值模拟分析时稳态假设与实际润滑脂流变特性、时变特性及润滑机制不符造成的;随着速度的增大整体膜厚、最小膜厚和中心膜厚都线性增大,且实验值与理论模拟值有较高的一致性。  相似文献   

12.
塑料轴承是常用的水润滑轴承,而乳化液由于无污染、来源广、节省能源、安全性等特点成为一种具有良好应用前景的润滑剂.以乳化液润滑复合塑料轴承为研究对象,建立塑料轴承弹流润滑模型,分析乏油条件下转速和载荷对润滑膜膜厚的影响,并与充分供油条件下的润滑膜膜厚进行比较.结果表明:随着供油量的增加,轴承油膜膜厚增加,但当供油量超过一临界值时,油膜膜厚不再变化.在乳化液润滑条件下,膜厚及最小膜厚均随转速的增大而明显增大,随载荷增大而减小,且供油条件没有造成明显的影响.  相似文献   

13.
建立具有中央凸起的点接触弹流润滑控制方程,并采用多重网格法及多重网格积分法进行数值求解;比较有凸起表面和光滑表面下的压力及膜厚曲线,讨论载荷及卷吸速度对压力分布及油膜形状的影响。结果表明:具有中央凸起时在接触中心附近,压力经历了急剧升高、骤然下降、再升高的一个波动过程;最小膜厚出现在接触中心,且接触中心前面产生了一个凹陷;增大卷吸速度或减小载荷都使得膜厚曲线整体升高,最小膜厚随着卷吸速度的增大而增大,载荷几乎不影响最小膜厚;载荷增大使得最大压力增大,但中心局部压力波动范围变化很小;增大卷吸速度使得最大压力和中心局部压力波动范围都减小。  相似文献   

14.
采用多重网格法和多重网格积分法对水基磁流体润滑轴承进行弹流润滑分析,在雷诺方程中考虑了热、非牛顿、磁场和时变的影响,探讨了粗糙度因素对弹流润滑性能的影响。分析中对比了轴-轴承双面和轴承单面带有正弦粗糙度时的润滑膜膜厚和压力的分布,并研究了双面都带有粗糙度相位不同时润滑膜压力和膜厚的分布。数值分析结果表明,两个表面都存在相同的粗糙度时,在波峰相对处的膜厚更小,压力更大,在波谷相对处的膜厚更大,压力更小;随着一个表面的粗糙峰远离另一个表面的粗糙峰时,膜厚和压力波动减小,润滑膜的最小膜厚逐渐增大,最大压力逐渐减小,直到润滑膜的粗糙峰与粗糙谷相对时,膜厚和压力不在波动,最小膜厚达到最大,最大压力达到最小。然后当这个表面粗糙峰再继续接近下一个表面粗糙峰时,膜厚和压力的波动增大,润滑膜的最小膜厚又开始减小,最大压力又增大,直到润滑膜的粗糙峰与粗糙峰相对时,膜厚和压力波动最大,最小膜厚达到最小,最大压力达到最大。  相似文献   

15.
基于高速铁路客车轴箱系统多界面接触力学分析模型,在轴箱轴承工况条件下,分析轴箱轴承滚动体与内、外圈间的接触载荷分布情况;建立高速铁路客车轴箱双列圆锥滚子轴承脂润滑弹流模型,并采用有限差分法数值解法。数值计算结果与最小膜厚公式获得的最小膜厚度进行比较,而最大润滑压力与相应的赫兹应力进行了比较。结果表明,在给定运行工况条件下,随着运行速度的增大,轴承滚道润滑接触形成的油膜压力减小,油膜增大;而当轴承载荷增大时,其油膜厚度减小,润滑压力增大。  相似文献   

16.
基于弹性流体动力润滑理论的齿轮设计   总被引:2,自引:0,他引:2  
齿轮传动是重要的传动形式之一,良好润滑是保证齿轮正常传动的关键因素.根据所建立的齿轮弹性流体动力润滑数学模型,进行数值求解,分析载荷参数、润滑油粘度对齿轮弹流润滑性能的影响规律.结果表明随着载荷增加,二次压力峰值减少,位置向入口区偏离;而增大齿轮润滑油的粘度,弹流油膜压力影响不是很大,油膜膜厚是逐渐增加的.最后,根据齿轮形成的最小油膜厚度与齿面粗糙度之比(即膜厚比)分析了齿轮传动的润滑状态.  相似文献   

17.
在经典的弹性流体动力润滑理论分析中,油膜压力的计算要满足载荷平衡条件,而这一条件并不适用于发生在限制空间中的弹流润滑,当弹流润滑发生在限制间隙中,油膜的承载力会随工作参数的变化而变化。对限制间隙条件下等温线接触弹流润滑问题进行数值分析,研究油膜厚度及压力的变化规律。结果表明:在限制间隙等温线接触弹流润滑条件下,油膜厚度及压力随速度参数以及材料参数的增加而增加,而限制间隙增加时,膜厚增加,压力减小。根据数值分析结果,拟合出限制间隙条件下的膜厚计算公式,该公式有较小的计算误差。  相似文献   

18.
在经典的弹性流体动力润滑理论分析中,油膜压力的计算要满足载荷平衡条件,而这一条件并不适用于发生在限制空间中的弹流润滑,当弹流润滑发生在限制间隙中,油膜的承载力会随工作参数的变化而变化。对限制间隙条件下等温线接触弹流润滑问题进行数值分析,研究油膜厚度及压力的变化规律。结果表明:在限制间隙等温线接触弹流润滑条件下,油膜厚度及压力随速度参数以及材料参数的增加而增加,而限制间隙增加时,膜厚增加,压力减小。根据数值分析结果,拟合出限制间隙条件下的膜厚计算公式,该公式有较小的计算误差。  相似文献   

19.
研究接触区的当量曲率半径对弹流油膜性质的影响,利用多重网格法求得非稳态弹流润滑问题。得到了接触固体两种等效曲率半径下的热弹流润滑数值解。数值模拟的结果显示最小膜厚的变化与Hamrock和Dowson的点接触弹流润滑的最小膜厚公式一致。在其他参数不变的情况下,曲率半径增加一倍,油膜的压力大约减小一倍,其第二压力峰变钝变宽;而膜厚增大,但其增加的幅度相比压力的增加要小很多;而温度的变化减小。  相似文献   

20.
《机械传动》2016,(5):105-109
利用考虑惯性力的Reynolds方程,对水润滑飞龙滑动轴承进行流体润滑数值分析。探讨不同载荷、转速以及表面粗糙度对压力和膜厚的影响,并与不考虑流体惯性力的热弹流解进行对比。结果表明,考虑流体惯性力的影响时,入口区压力增大,压力峰值有所减小,中心膜厚与最小膜厚均增大;随着载荷的增大,压力峰值增大,入口区的压力和膜厚减小;随着转速的增大,压力峰值减小,入口区压力及润滑膜膜厚增大;轴承表面粗糙度使得压力和膜厚均出现了连续波动,压力峰值增大,最小膜厚减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号