首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 305 毫秒
1.
The antimicrobial effects of zein coatings containing nisin, sodium lactate, and sodium diacetate against Listeria monocytogenes on turkey frankfurters at 4 degrees C were determined. Our objectives were to determine whether zein, nisin, lactate, and diacetate alone or in combination could control the growth of L. monocytogenes on full-fat turkey frankfurters at 4 degrees C and to determine whether lactate or diacetate had any synergistic effect on the activity of nisin. Turkey frankfurter pieces surface inoculated with L. monocytogenes strain V7 were treated with zein-ethanol-glycerol (ZEG), zein-propylene-glycol (ZPR), ethanol-glycerol (EG), propylene glycol (PR), nisin (N), sodium lactate (L), or sodium diacetate (D) alone or in combination. Over 28 days, treatment with N or D alone reduced L. monocytogenes counts on frankfurters by 6.6 or 6.3 log CFU/g, respectively. N-D treatment reduced L. monocytogenes by 6 log CFU/g. The zein solvents EG and PR reduced L. monocytogenes by about 5.6 and 5.2 log CFU/g, respectively, similar to the results obtained with ZEG and ZPR, which suggests that zein powder per se had no antimicrobial activity. After 28 days, ZEG-N-D, ZEG-N-D-L, ZPR-N-D, and ZPR-N-D-L yielded no detectable CFU. L alone was ineffective. No synergies were observed. N and D when used singly and the combinations of N-D, ZEG-N-D, ZEG-N-D-L, ZPR-N-D, ZPR-N-D-L, EG, and PR were effective as inhibitors of the growth of recontaminating L. monocytogenes cells on full-fat turkey frankfurters.  相似文献   

2.
ABSTRACT: This study investigated the effect of nisin added to zein film coatings (Z) coated onto ready-to-eat chicken against L. monocytogenes. L. monocytogenes inoculated chicken samples were dipped into Z dissolved in propylene glycol (ZP) or ethanol (ZE), with and without added nisin (N) (1000 IU/g) and/or 1% calcium propionate (CP) then stored at 4 °C or 8 °C for 24 d. After 16 d at 4 °C the growth of L. monocytogenes (6.8 log CFU/g) was suppressed by 4.5 to 5 log CFU/g and at 2.7 log CFU/g counts were maintained at a nondetectable level from day 0 to day 24 with ZEN, ZPNCP, or ZENCP. Zein film coatings with nisin can prevent the growth of L. monocytogenes on ready-to-eat chicken.  相似文献   

3.
Recontamination of cooked ready-to-eat (RTE) chicken and beef products with Listeria monocytogenes has been a major safety concern. Natural antimicrobials in combinations can be an alternative approach for controlling L. monocytogenes. Therefore, the objectives of this study were to evaluate the inhibitory activities against L. monocytogenes of nisin (6,400 IU/ ml), grape seed extract (GSE; 1%), and the combination of nisin and GSE both in tryptic soy broth with 0.6% yeast extract (TSBYE) and on the surface of full-fat turkey frankfurters. TSBYE was incubated at 37 degrees C for 72 h and turkey frankfurters at 4 or 10'C for 28 days. Inocula were 6.7 or 5 log CFU per ml or g for TSBYE or frankfurters, respectively. After 72 h in TSBYE, nisin alone did not show any inhibitory activity against L. monocytogenes. The combination of nisin and GSE gave the greatest inhibitory activity in both TSBYE and on turkey frankfurters with reductions of L. monocytogenes populations to undetectable levels after 15 h and 21 days, respectively. This combination of two natural antimicrobials has the potential to control the growth and recontamination of L. monocytogenes on RTE meat products.  相似文献   

4.
Generally-recognized-as-safe chemicals applied to the surfaces of turkey frankfurters were evaluated for their ability to reduce populations of or inhibit the growth of Listeria monocytogenes. Frankfurters were treated prior to inoculation by dipping for 1 min in a solution of one of four preservatives (sodium benzoate, sodium propionate, potassium sorbate, and sodium diacetate) at three different concentrations (15, 20, and 25% [wt/vol]), with < 0.3% of the preservative being present for each frankfurter. Subsequently, 0.1 ml of a five-strain mixture of L. monocytogenes (10(6) CFU/ml) was used to surface inoculate each frankfurter separately in a sterile stomacher bag. Inoculated frankfurter bags were held at 4, 13, and 22 degrees C, and L. monocytogenes cells were enumerated at 0, 3, 7, 10, and 14 days of storage. The results of this study revealed that at all three concentrations of all four preservatives, the initial populations of L. monocytogenes decreased immediately by 1 to 2 log10 CFU/g. After 14 days of storage at 4 degrees C, L. monocytogenes counts for all treated frankfurters were 3 to 4 log10 CFU/g less than those for the untreated frankfurters. After 14 days of storage at 13 degrees C, L. monocytogenes counts for frankfurters treated with 25% sodium benzoate or 25% sodium diacetate were 3.5 to 4.5 log10 CFU/g less than those for untreated frankfurters, and those for frankfurters treated with 25% sodium propionate or 25% potassium sorbate were 2.5 log10 CFU/g less than those for untreated frankfurters. In all instances, the degree of growth inhibition was directly proportional to the concentration of the preservative. Only frankfurters treated with 25% sodium diacetate or sodium benzoate were significantly inhibitory to L. monocytogenes when held at 22 degrees C for 7 days or longer. Interestingly, the untreated frankfurters held at 22 degrees C were spoiled within 7 days, with copious slime formation, whereas there was no evidence of slime on any treated frankfurters after 14 days of storage.  相似文献   

5.
Commercially prepared frankfurters were formulated with and without approximately 1.4% potassium lactate and 0.1% sodium diacetate and were subsequently processed in cellulose casings coated with and without nisin (approximately 50,000 IU per square inch of internal surface area) to control the outgrowth of Listeria monocytogenes during refrigerated storage. The frankfurters were inoculated with approximately 5 log CFU per package of a five-strain mixture of L. monocytogenes and then vacuum sealed before being stored at 4 degrees C for 60 to 90 days. Surviving organisms were recovered and enumerated by rinsing each package with 18 ml of sterile 0.1% peptone water and plating onto MOX selective agar. The data for each of two trials were averaged. In packages that contained frankfurters formulated with potassium lactate and sodium diacetate and prepared in nisin-coated casings, L. monocytogenes levels decreased by 1.15 log CFU per package after 90 days of storage. L. monocytogenes levels decreased by 0.95 log CFU per package in frankfurters that were prepared in casings that were not coated with nisin. In packages of frankfurters that were formulated without potassium lactate and sodium diacetate and prepared in nisin-coated casings, L. monocytogenes levels decreased by 0.88 log CFU per package after 15 days of storage but then increased appreciably thereafter over a 60-day period of refrigerated storage. There was also an appreciable increase in pathogen numbers during 60 days of storage in otherwise similar frankfurters formulated without potassium lactate and sodium diacetate prepared in casings that were not coated with nisin. These data confirm that potassium lactate and sodium diacetate display listeriostatic activity as an ingredient of commercial frankfurters. These data also establish that cellulose casings coated with nisin display only moderate antilisterial activity in vacuum-sealed packages of commercially prepared frankfurters during storage at 4 degrees C.  相似文献   

6.
ABSTRACT:  The use of antimicrobial ingredients in combination with irradiation is an effective antilisterial intervention strategy for ready-to-eat meat products. Microbial safety was evaluated for frankfurters formulated with 0% or 3% added potassium lactate/sodium diacetate solution and inoculated with Listeria monocytogenes before or after treatment with irradiation (0, 1.8, or 2.6 kGy). Frankfurters were stored aerobically or vacuum packaged and L. mo nocytogenes counts and APCs were determined while refrigerated. The incorporation of lactate/diacetate with or without irradiation had a strong listeriostatic effect for aerobically stored frankfurters. Outgrowth was suppressed and counts were not different from initial counts (5.2 log CFU/frank compared with 5.0 log CFU/frank); however, those without the additive increased steadily (5.4 to 9.3 log CFU/frank). Irradiation treatments alone had higher L. monocytogenes counts after 3 wk. For vacuum-packaged frankfurters, both the addition of lactate/diacetate and irradiation were effective at controlling growth after 8 wk. Large and incremental reductions in total counts were seen for irradiation treatments. Initial counts were reduced by 3 log CFU with the application of 1.8 kGy while 2.6 kGy decreased counts over 5 log CFU. These reductions were maintained throughout storage for lactate/diacetate-treated frankfurters. By 8 wk, L. monocytogenes counts on 1.8 and 2.6 kGy irradiated frankfurters without lactate/diacetate increased to 7.43 and 6.13 log CFU, respectively. Overall, lactate/diacetate retarded the outgrowth of L. monocytogenes on frankfurters throughout aerobic storage and the combination of irradiation and 3% lactate/diacetate reduced and retarded growth of L. monocytogenes , especially during the last 2 wk of vacuum-packaged storage.  相似文献   

7.
ABSTRACT:  This study investigated the antimicrobial effect of oyster lysozyme with or without nisin added to calcium alginate (CaAlg) coated on the surface of smoked salmon against Listeria monocytogenes and Salmonella anatum . L. monocytogenes or S. anatum inoculated smoked salmon samples (1 g) were dipped into CaAlg with either oyster lysozyme (OysL) or hen egg white lysozyme (HEWL), with or without added nisin (N), then stored at 4 °C for 35 d. Our results indicated that the effectiveness of oyster lysozyme or hen egg white lysozyme was enhanced when added to calcium alginate coatings. After 35 d at 4 °C the growth of L. monocytogenes and S. anatum was suppressed in the range of 2.2 to 2.8 log CFU/g with CaAlgNOysL or CaAlgNHEWL coatings compared to the control nontreated samples. There was no significant difference between oyster lysozyme and hen egg white lysozyme treatments against L. monocytogenes or S. anatum inoculated on the surface of salmon. Calcium alginate coatings containing lysozyme with nisin or without could be used to reduce the growth of L. monocytogenes and S. anatum on the surface of ready-to-eat smoked salmon at refrigerated temperatures.  相似文献   

8.
ABSTRACT:  Microwave oven heating was evaluated for inactivation of  Listeria monocytogenes  on inoculated and stored frankfurters. Frankfurters formulated without/with 1.5% potassium lactate and 0.1% sodium diacetate were inoculated with  L. monocytogenes  (1.9 ± 0.2 log CFU/cm2), vacuum-packaged, and stored (4 °C) to simulate conditions prior to purchase by consumers. At storage days 18, 36, and 54, packages were opened and placed at 7 °C, simulating aerobic storage in a household refrigerator. At 0, 3, and 7 d of aerobic storage, 2 frankfurters were placed in a bowl with water (250 mL) and treated in a household microwave oven at high (1100 W) power for 30, 45, 60, or 75 s, or medium (550 W) power for 60 or 75 s. Frankfurters and the heating water were analyzed for total microbial counts and  L. monocytogenes  populations. Exposure to high power for 75 s reduced pathogen levels (0.7 ± 0.0 to 1.0 ± 0.1 log CFU/cm2) to below the detection limit (<−0.4 log CFU/cm2) on frankfurters with lactate/diacetate, even after 54 d of vacuum-packaged storage followed by 7 d of aerobic storage. For frankfurters without lactate/diacetate, high power for 75 s caused reductions between > 1.5 and 5.9 log CFU/cm2 from control levels of 1.5 ± 0.1 to 7.2 ± 0.5 log CFU/cm2. Depending on treatment and storage time, the water used to reheat the frankfurters had viable  L. monocytogenes  counts of <−2.4 to 5.5 ± 0.5 log CFU/mL. The results indicated that frankfurters should be reheated in a microwave oven at high power for 75 s to inactivate up to 3.7 log CFU/cm2 of  L. monocytogenes  contamination.  相似文献   

9.
The antilisterial effect of postprocess antimicrobial treatments on commercially manufactured frankfurters formulated with and without a 1.5% potassium lactate-0.05% sodium diacetate combination was evaluated. Frankfurters were inoculated (ca. 3 to 4 log CFU/cm2) with 10-strain composite Listeria monocytogenes cultures originating from different sources. The inocula evaluated were cells grown planktonically in tryptic soy broth plus 0.6% yeast extract (30 degrees C, 24 h) or in a smoked sausage homogenate (15 degrees C, 7 days) and cells that had been removed from stainless steel coupons immersed in an inoculated smoked sausage homogenate (15 degrees C, 7 days). Inoculated frankfurters were dipped (2 min, 25 +/- 2 degrees C) in acetic acid (AA; 2.5%), lactic acid (LA; 2.5%), potassium benzoate (PB; 5%), or Nisaplin (commercial form of nisin; 0.5%, equivalent to 5,000 IU/ml of nisin) solutions, or in Nisaplin followed by AA, LA, or PB, and were subsequently vacuum packaged and stored for 48 days at 10 degrees C. In addition to microbiological analyses, sensory evaluations were performed with uninoculated samples that had been treated with AA, LA, or PB for 2 min. Initial L. monocytogenes populations were reduced by 1.0 to 1.8 log CFU/cm2 following treatment with AA, LA, or PB solutions, and treatments that included Nisaplin reduced initial levels by 2.4 to >3.8 log CFU/ cm2. All postprocessing treatments resulted in some inhibition of L. monocytogenes during the initial stages of storage of frankfurters that were not formulated with potassium lactate-sodium diacetate; however, in all cases, significant (P < 0.05) growth occurred by the end of storage. The dipping of products formulated with potassium lactate-sodium diacetate in AA or LA alone--or in Nisaplin followed by AA, LA, or PB-increased lag-phase durations and lowered the maximum specific growth rates of the pathogen. Moreover, depending on the origin of the inoculum, this dipping of products led to listericidal effects. In general, differences in growth kinetics were obtained for the three inocula that were used to contaminate the frankfurters. Possible reasons for these differences include the presence of stress-adapted subpopulations and the inhibition of the growth of the pathogen due to high levels of spoilage microflora. The dipping of frankfurters in AA, LA, or PB did not (P > 0.05) affect the sensory attributes of the product when compared to the control samples. The data generated in this study may be useful to U.S. ready-to-eat meat processors in their efforts to comply with regulatory requirements.  相似文献   

10.
The control of Listeria monocytogenes was evaluated with ready-to-eat uncured turkey and cured pork-beef bologna with combinations of benzoate, propionate, and sorbate. Three treatments of each product type were formulated to include control with no antimycotic agents; a combination of 0.05% sodium benzoate and 0.05% sodium propionate; and a combination of 0.05% sodium benzoate and 0.05% potassium sorbate. Ingredients were mixed, stuffed into fibrous, moisture-impermeable casings, cooked to an internal temperature of 73.9 degrees C, chilled, and sliced. The final product was surface inoculated with L. monocytogenes (4 log CFU per package), vacuum packaged, and stored at 4 degrees C for 13 weeks. The antimycotic addition to the second and third uncured turkey treatments initially slowed the pathogen growth rate compared with the control, but populations of L. monocytogenes increased 5 log or more by 6 weeks. In contrast, the addition of antimycotic combinations in the cured bologna prevented growth of L. monocytogenes during the 13-week storage period at 4 degrees C, compared with a more than 3.5-log increase in listerial populations in the control bologna, to which no antimicrobial agents had been added. These data suggest that low concentrations of antimycotic agents can prevent L. monocytogenes growth in certain ready-to-eat meats. Additional research is needed to define the levels needed to prevent growth of L. monocytogenes in high-moisture cured and uncured ready-to-eat meat and poultry and for gaining governmental approval for their use in such formulations.  相似文献   

11.
ABSTRACT:  Biodegradable polylactic acid (PLA) polymer was evaluated for its application as a material for antimicrobial food packaging. PLA films were incorporated with nisin to for control of foodborne pathogens. Antimicrobial activity of PLA/nisin films against Listeria monocytogenes , Escherichia coli O157:H7, and Salmonella Enteritidis were evaluated in culture media and liquid foods (orange juice and liquid egg white). Scanned electron micrograph and confocal laser microscopy revealed that nisin particles were evenly distributed in PLA polymer matrix on the surface and inside of the PLA/nisin films. PLA/nisin significantly inhibited growth of L . monocytogenes in culture medium and liquid egg white. The greatest inhibition occurred at 24 h when the cell counts of L. monocytogenes in the PLA/nisin samples were 4.5 log CFU/mL less than the controls. PLA/nisin reduced the cell population of E. coli O157:H7 in orange juice from 7.5 to 3.5 log at 72 h whereas the control remained at about 6 log CFU/mL. PLA/nisin treatment resulted in a 2 log reduction of S. Enteritidis in liquid egg white at 24 °C. After 21 d at 4 °C the S. Enteritidis population from PLA/nisin treated liquid egg white (3.5 log CFU/mL) was significantly less than the control (6.8 log CFU/mL). E. coli O157:H7 in orange juice was more sensitive to PLA/nisin treatments than in culture medium. The results of this research demonstrated the retention of nisin activity when incorporated into the PLA polymer and its antimicrobial effectiveness against foodborne pathogens. The combination of a biopolymer and natural bacteriocin has potential for use in antimicrobial food packaging.  相似文献   

12.
The individual and combined antilisterial activity of the preservatives sodium lactate (4%), potassium sorbate (0.3%) and nisin (400 IU/ml), in either the presence or absence of the curing salts nitrite (125 ppm) and polyphosphate (0.5%), was assessed in buffered BHI broth (pH 5.5) during incubation at 4C. A cocktail of the strain Listeria monocytogenes NCTC 7973 and two food derived strains was used as the inoculum in challenge studies. In the absence of the preservatives , L. monocytogenes grew in the presence of polyphosphate but not in the presence of nitrite or a combination of nitrite and polyphosphate. The antilisterial action of nitrite was predominantly bacteriostatic in nature. Lactate acting alone, or in the presence of curing salts, produced a bacteriostatic effect. Sorbate acting alone had a bacteriostatic effect. Sorbate acting in the presence of nitrite or nitrite and polyphosphate produced a marked listericidal effect, reducing the population by 6.7 logs and 5.4 logs, respectively. Nisin acting alone produced an almost immediate 90% listericidal response (1 log population decrease), but initial numbers were restored within 14 days by regrowth. Regrowth was eliminated when nisin was used in combination with lactate, nitrite or nitrite and polyphosphate. The combination of lactate and sorbate offered no advantage over the use of sorbate alone. Sorbate and nisin acting in combination produced an enhanced listericidal effect, which was also seen in the presence of curing salts, but was delayed. No listericidal advantage over sorbate-nisin combination was achieved through the use of the lactate-sorbate-nisin combination. The combined use of sorbate and nisin offers promise as a means of eliminating L. monocytogenes from low pH cured meat products. The efficacy of this preservative combination remains to be evaluated in a meat system before its practical application can be considered .  相似文献   

13.
The relatively high prevalence of Listeria monocytogenes in ready-to-eat (RTE) turkey products is of great concern. The overall objective of this study was to develop antimicrobial edible coating formulations to effectively control the growth of this pathogen. The antimicrobials studied were nisin (500 IU/g), Novagard CB 1 (0.25%), Guardian NR100 (500 ppm), sodium lactate (SL, 2.4%), sodium diacetate (SD, 0.25%), and potassium sorbate (PS, 0.3%). These were incorporated alone or in binary combinations into five edible coatings: alginate, κ-carrageenan, pectin, xanthan gum, and starch. The coatings were applied onto the surface of home-style poached and processed deli turkey discs inoculated with ~ 3 log CFU/g of L. monocytogenes. The turkey samples were then stored at 22 °C for 7 days. For poached and processed deli turkey, the coatings were found to be equally effective, with pectin being slightly less effective than the others. The most effective poached turkey treatments seemed to be SL (2.4%)/SD (0.25%) and Nisin (500 IU/g)/SL (2.4%), which yielded final populations of 3.0 and 4.9 log CFU/g respectively compared to the control which was 7.9 log CFU/g. For processed deli turkey, the most effective antimicrobial treatments seemed to be Nisin (500 IU/g)/SD (0.25%) and Nisin (500 IU/g)/SL (2.4%) with final populations of 1.5 and 1.7 log CFU/g respectively compared to the control which was 6.5 log CFU/g. In the second phase of the study, home-style poached and store-purchased roasted (deli) turkey inoculated with the pathogen at a level of ~ 3 log CFU/g were coated with alginate incorporating selected antimicrobial combinations and stored for 8 weeks at 4 °C. Alginate coatings supplemented with SL (2.4%)/PS (0.3%) delayed the growth of L. monocytogenes with final counts reaching 4.3 log CFU/g (home-style poached turkey) and 6.5 log CFU/g (roasted deli turkey) respectively while the counts in their untreated counterparts were significantly higher (P < 0.05) reaching 9.9 and 7.9 log CFU/g, respectively. This study therefore demonstrates the effectiveness of using alginate-based antimicrobial coatings to enhance the microbiological safety and quality of RTE poultry products during chilled storage.  相似文献   

14.
A bacterially produced cellulose film containing nisin was developed and used in a proof-of-concept study to control Listeria monocytogenes and total aerobic bacteria on the surface of vacuum-packaged frankfurters. Bacterial cellulose pellicles were produced by Gluconacetobacter xylinus K3 in Corn Steep Liquor-Mannitol Medium and were subsequently purified before nisin was incorporated into them. Investigations into the effect of nisin concentrations and contact times on incorporation of nisin into cellulose films showed that the lowest nisin concentration and shortest time needed for production of an effective antimicrobial cellulose film were 625IUml(-1) and 6h, respectively. The active cellulose films produced under these conditions did not, however, significantly reduce L. monocytogenes populations on frankfurters (P>0.05) during refrigerated storage for 14 days as compared to the controls. Films produced using a higher concentration of nisin (2500IUml(-1)) with the same exposure time (6h) resulted in a significant (P<0.05) decrease in L. monocytogenes counts on frankfurters of approximately 2logCFUg(-1) after 14 days of storage as compared to the control. Both the above-mentioned films showed a similar effectiveness in reducing total aerobic bacterial populations as measured by total aerobic plate counts on frankfurters. For both films, total aerobic bacterial levels were significantly (P>0.05) reduced by approximately 3.3logCFUg(-1) after 14 days of storage as compared to control samples. Bacterial cellulose films were demonstrated in this study to have potential applicability as antimicrobial packaging films or inserts for processed meat products.  相似文献   

15.
The relatively high incidence of Listeria monocytogenes in ready-to-eat (RTE) products such as cold-smoked salmon is of serious concern. The objective of this study was to evaluate the efficacy of chitosan-based edible coatings and films incorporating 3 generally recognized as safe (GRAS) antimicrobials, sodium lactate (SL), sodium diacetate (SD), and potassium sorbate (PS), against L. monocytogenes on cold-smoked salmon. Salmon samples were surface-inoculated with a 5-strain cocktail of Listeria monocytogenes to a final concentration of 4.4 log CFU/cm(2) and then either coated with chitosan solutions or wrapped with chitosan films with or without the 3 antimicrobials. The samples were then vacuum packaged and stored at 4 °C for 30 d. The chitosan coatings with or without the antimicrobials consistently showed higher efficacy against L. monocytogenes than chitosan films having the same compositions. The most effective film treatments, chitosan films containing 1.2% SL/0.25% SD or 2.4% SL, achieved ≥ 1.3 log reductions of L. monocytogenes during the 30 d of refrigerated storage, while the most effective coating treatments, chitosan coatings containing 1.2% SL/0.25% SD or 0.15% PS/0.125% SD, achieved ≥ 2.8 log reductions. Practical Application: This study shows that chitosan-based edible coatings and films hold promise and can potentially assist fishery industries in their efforts to control L. monocytogenes.  相似文献   

16.
Sliced cooked turkey bologna with various additive formulations was surface-inoculated with Listeria monocytogenes (2.06–2.75 log CFU/g), vacuum packaged, and stored at 4°C. Sodium acetate was most inhibitory against growth of L. monocytogenes, followed by sodium lactate and potassium sorbate, while sodium bicarbonate allowed a maximum net growth of 6.78 log CFU/g, not significantly different (p>0.05) from the control (6.43 log CFU/g). Addition of 0.5% sodium acetate, 2.0% sodium lactate, or 0.26% potassium sorbate may significantly (p<0.05) decrease growth of L. monocytogenes in refrigerated turkey bologna surface-inoculated after thermal processing and slicing.  相似文献   

17.
The objective of this study was to investigate the effect of nisin in combination with heat or antimicrobial chemical treatments (such as lactic acid, chlorous acid, and sodium hypochlorite) on the inhibition of Listeria monocytogenes and total mesophiles in sturgeon (Acipenser transmontanus) caviar. The effects of nisin (250, 500, 750, and 1,000 IU/ml), lactic acid (1, 2, and 3%), chlorous acid (134 and 268 ppm), sodium hypochlorite (150 and 300 ppm), and heat at 60 degrees C for 3 min were evaluated for a five-strain mixture of L. monocytogenes and total mesophiles in sturgeon caviar containing 3.5% salt. Selected combinations of these antimicrobial treatments were also tested. Injured and viable L. monocytogenes cells were recovered using an overlay method. Treating caviar with > or =500 IU/ml nisin initially reduced L. monocytogenes by 2 to 2.5 log units. Chlorous acid (268 ppm) reduced L. monocytogenes from 7.7 log units to undetectable (<0.48 log units) after 4 days of storage at 4 degrees C. However, there were no synergistic effects observed for combinations of nisin (500 or 750 IU/ml) plus either lactic acid or chlorous acid. Lactic acid caused a slight reduction (approximately 1 log unit) in the microbial load during a 6-day period at 4 degrees C. Sodium hypochlorite was ineffective at the levels tested. Mild heating (60 degrees C for 3 min) with nisin synergistically reduced viable counts of L. monocytogenes and total mesophiles. No L. monocytogenes cells (<0.48 log units) were recovered from caviar treated with heat and nisin (750 IU/ml) after a storage period of 28 days at 4 degrees C.  相似文献   

18.
ABSTRACT:  Listeria monocytogenes , a psychrotrophic foodborne pathogen, is a recurring postprocess contaminant on ready-to-eat meat (RTE) products, including frankfurters. Potassium lactate (PL) and sodium diacetate (SDA) are FDA-approved antimicrobials that inhibit the growth of L. monocytogenes when incorporated into the formulation of fine emulsion sausage. Flash (steam) pasteurization (FP) has been shown to reduce levels of L. monocytogenes , and its surrogate L. innocua , on frankfurter surfaces. The ability of FP to inactivate and prevent the growth of the L. monocytogenes surrogate L. innocua in a pilot plant setting was investigated. FP treatment (1.5 s, 121 °C) of single layers of frankfurters that were surface-inoculated with either 5, 4, or 3 log CFU/g of L. innocua immediately before FP (1.5 s, 121 °C) resulted in log reductions of 1.97 (± 0.11), 2.03 (± 0.10), or 2.07 (± 0.14), respectively. Inoculum level had no effect on the inactivation of L. innocua . Following 8 wk of refrigerated storage (4 °C), L. innocua levels decreased by 0.5 log in non-FP-treated frankfurter packs, while the 2 log reduction of L. innocua was maintained for FP-treated frankfurters. FP (1.5 s, 121 °C) had no effect on frankfurter color or texture. Because the numbers of L. monocytogenes associated with contaminations of ready-to-eat meats are typically very low, the use of FP in combination with PL and SDA has the potential to reduce the number of frankfurter recalls and foodborne illness outbreaks.  相似文献   

19.
The objective of this study was to evaluate the inhibitory effect of grape seed extract (GSE), green tea extract (GTE), nisin and their combinations (nisin with either GSE or GTE) against Listeria monocytogenes. The inhibitory effect of these natural compounds was evaluated in phosphate buffer solution (PBS) medium containing approximately 109 colony‐forming units (CFU/mL) of L. monocytogenes. The effectiveness of these compounds in a meat model system was evaluated by surface inoculation (approximately 106 CFU/g) of L. monocytogenes onto turkey frankfurters. The inoculated frankfurters were dipped into soy protein film‐forming solutions with and without the addition of antimicrobial agents (GSE 1% or GTE 1% or nisin 10000 IU or combinations). Samples were stored at either 4 °C or 10 °C. The inhibitory effects of edible coatings were evaluated on a weekly basis for 28 d. The greatest inhibitory effect was observed in the PBS medium containing GSE (1%) and nisin (10000 IU/mL), which caused a 9‐log cycle reduction of L. monocytogenes population after 3 h incubation at 37 °C. In the meat system, the L. monocytogenes population (7.1 CFU/g) was decreased by more than 2 log cycle after 28 d at 4 °C and 10 °C, in the samples containing nisin (10000 IU) combined with either GSE (1%) or GTE (1%). This research has demonstrated that the use of an edible film coating containing both nisin and natural extracts is a promising means of controlling the growth and recontamination of L. monocytogenes on ready‐to‐eat meat products.  相似文献   

20.
This research was conducted to study the growth of Listeria monocytogenes inoculated on frankfurters stored at different conditions as a basis for a safety-based consume by shelf life date label. Three L. monocytogenes strains were separately inoculated at 10 to 20 CFU/cm2 onto frankfurters that were previously formulated with or without high pressure and with or without added 2% potassium lactate (PL) and 0.2% sodium diacetate (SD). Inoculated frankfurters were air or vacuum packaged; stored at 4, 8, or 12 degrees C; and L. monocytogenes and psychrotrophic plate counts were determined for 90, 60, and 45 days, respectively, or until the stationary phase was reached. The data (log CFU per square centimeter versus time) were fitted using the Baranyi-Roberts model to determine maximum growth rates and lag-phase time. The maximum growth rates and the lag time under each growth condition were used to calculate the time to reach 100-fold the initial Listeria population. In frankfurters lacking PL and SD, the count of all strains increased by 2 log after 18 to 50 days at 4 degrees C and 4 to 13 days at 8 degrees C. The growth was inhibited at 4 and 8 degrees C in frankfurters containing PL and SD, but one ribotype was capable of growing, with the time to reach 100-fold the initial Listeria population ranging from 19 to 35 days at 12 degrees C. In most cases, the time to reach 100-fold the initial Listeria population of L. monocytogenes was significantly longer in vacuum-packaged frankfurters as compared with air-packaged samples. Inclusion of PL and SD also inhibited the growth of psychrotrophs, but at all temperatures the psychrotrophic plate counts were greater than 4 log CFU/cm2 at the end of the experiments. These results indicated that despite the use of antimicrobials, certain L. monocytogenes strains could be capable of growing under storage-abuse conditions. Growth kinetics data could be useful for establishing a shelf life date label protocol under different handling scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号