首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 276 毫秒
1.
Muscarinic receptors regulate a number of important basic physiologic functions including heart rate and motor and sensory control as well as more complex behaviors including arousal, memory, and learning. Loss of muscarinic receptor number or function has been implicated in the etiology of several neurological disorders including Alzheimer's dementia, Down's syndrome, and Parkinson's disease. Muscarinic receptors transduce their signals by coupling with G-proteins, which then modulate the activity of a number of effector enzymes and ion channels. Five subtypes of muscarinic receptors (m1-m5) have been identified by molecular cloning and much has been learned about their distribution, pharmacology, and structure. Less is known about the molecular mechanisms of receptor-effector coupling and the biological role of each receptor subtype. The ectopic expression of genes encoding a single muscarinic receptor subtype in mammalian cell lines has provided an important model system in which to investigate receptor subtype-specific pharmacology and signal transduction. Expression models have revealed that single muscarinic receptor m1, m3, or m5 subtypes can activate multiple signaling effectors simultaneously including phospholipases A2, C, and D, as well as tyrosine kinase and a novel class of voltage-insensitive calcium channels. The m2 or m4 receptors have been shown to augment phospholipase A2 in addition to their established role as inhibitory receptors acting through the attenuation of adenylate cyclase. In addition to allowing investigations of the regulatory mechanisms of muscarinic receptors, expression models provide an excellent tool to investigate receptor-subtype specific physiology and pharmacology.  相似文献   

2.
Metabotropic glutamate receptors (mGlu receptors), the Ca2+-sensing receptor, gamma-aminobutyric acid type B receptors, and one group of pheromone receptors constitute a unique family (also called family 3) of heptahelical receptors. This original family shares no sequence similarity with any other G protein-coupled receptors. The identification and comparison of the molecular determinants of receptor/G protein coupling within the different receptor families may help identify general rules involved in this protein/protein interaction. In order to detect possible contact sites important for coupling selectivity between family 3 receptors and the G protein alpha-subunits, we examined the coupling of the cyclase-inhibiting mGlu2 and mGlu4 receptors to chimeric alphaq-subunits bearing the 5 extreme C-terminal amino acid residues of either Galphai, Galphao, or Galphaz. Whereas mGlu4 receptor activated all three chimeric G proteins, mGlu2 receptor activated Galphaqi and Galphaqo but not Galphaqz. The mutation of isoleucine -4 of Galphaqz into cysteine was sufficient to recover coupling of the mutant G protein to mGlu2 receptor. Moreover, the mutation of cysteine -4 of Galphaqo into isoleucine was sufficient to suppress the coupling to mGlu2 receptor. Mutations at positions -5 and -1 had an effect on coupling efficiency, but not selectivity. Our results emphasize the importance of the residue -4 of the alpha-subunits in their specific interaction to heptahelical receptors by extending this finding on the third family of G protein-coupled receptors.  相似文献   

3.
Random mutations were generated in the G-protein-coupled receptor (Ste2p) for the tridecapeptide pheromone (alpha-factor) of Saccharomyces cerevisiae. These mutants were screened for variants that responded to antagonists. Because multiple mutations were detected in each mutant receptor recovered from the screen, site-directed mutagenesis was used to create single-site mutant receptors. Three receptors containing mutations F55V, S219P, and S259P were analyzed for their biological responses to various alpha-factor analogs and for their ligand binding profiles. Cells expressing each of the mutant receptors responded to alpha-factor as well as or better than wild-type cells in a growth arrest assay. In contrast, the binding of alpha-factor to the F55V and S219P mutant receptors was at least 10-fold reduced in comparison to wild-type receptor indicating a complex non-linear correlation between binding affinity and biological activity. Cells expressing mutant receptors responded to some normally inactive analogs in biological assays, despite the fact that these analogs had a low affinity for Ste2p. The analysis of these mutant receptors confirms previous findings that the first and sixth transmembrane regions of Ste2p are important for ligand interaction, ligand specificity, and/or receptor activation to initiate the signal transduction pathway. Changes in binding affinity of pheromone analogs to wild-type and mutant receptors indicate that residue 55 of Ste2p is involved with both ligand binding and signal transduction.  相似文献   

4.
The molecular basis for recognition by human P2Y1 receptors of the novel, competitive antagonist 2'-deoxy-N6-methyladenosine 3', 5'-bisphosphate (MRS 2179) was probed using site-directed mutagenesis and molecular modeling. The potency of this antagonist was measured in mutant receptors in which key residues in the transmembrane helical domains (TMs) 3, 5, 6, and 7 were replaced by Ala or other amino acids. The capacity of MRS 2179 to block stimulation of phospholipase C promoted by 2-methylthioadenosine 5'-diphosphate (2-MeSADP) was lost in P2Y1 receptors having F226A, K280A, or Q307A mutations, indicating that these residues are critical for the binding of the antagonist molecule. Mutation of the residues His132, Thr222, and Tyr136 had an intermediate effect on the capacity of MRS 2179 to block the P2Y1 receptor. These positions therefore appear to have a modulatory role in recognition of this antagonist. F131A, H277A, T221A, R310K, or S317A mutant receptors exhibited an apparent affinity for MRS 2179 that was similar to that observed with the wild-type receptor. Thus, Phe131, Thr221, His277, and Ser317 are not essential for antagonist recognition. A computer-generated model of the human P2Y1 receptor was built and analyzed to help interpret these results. The model was derived through primary sequence comparison, secondary structure prediction, and three-dimensional homology building, using rhodopsin as a template, and was consistent with data obtained from mutagenesis studies. We have introduced a "cross-docking" procedure to obtain energetically refined 3D structures of the ligand-receptor complexes. Cross-docking simulates the reorganization of the native receptor structure induced by a ligand. A putative nucleotide binding site was localized and used to predict which residues are likely to be in proximity to agonists and antagonists. According to our model TM6 and TM7 are close to the adenine ring, TM3 and TM6 are close to the ribose moiety, and TM3, TM6, and TM7 are near the triphosphate chain.  相似文献   

5.
A molecular structural criterion of ligand selectivity for the 5-HT2 versus 5-HT1C receptor was hypothesized on the basis of radioligand binding data. Despite the large number of compounds which have been tested at both receptors, analysis of published data led to the identification of only five agents which are greater than 10-fold selective for the 5-HT2 versus the 5-HT1C receptor. Comparison of the two-dimensional structures revealed that, although these five compounds represent three distinct structural classes, they share a common structural feature located in the region hypothesized to be involved in receptor binding: a carbonyl or carboxyl oxygen interposed spatially between an aromatic ring and nitrogen atom. This structural feature was used to predict the relative selectivity of compounds that had not previously been analyzed at both the 5-HT2 and 5-HT1C receptors. All six drugs tested which contain the identified reactive carbonyl or carboxyl group were found to be selective for the 5-HT2 versus the 5-HT1C receptor with selectivity ratios ranging from 26 to 380. By contrast, three agents which are structurally similar but do not contain the reactive carbonyl or carboxyl group displayed equally high affinity for both receptor binding sites. Since the physiological roles of the 5-HT2 and 5-HT1C receptor are markedly different, it would be of potential clinical and scientific value to utilize this molecular structural feature to further identify chemical compounds which would selectively interact with only one of the two receptors.  相似文献   

6.
7.
Intrapulmonary receptors identified in the Tegu lizard by single-unit vagal recording (Fedde et al., 1977) were subjected to a number of stimuli and localized within the lung. Some carbon dioxide receptors could follow periodic changes in intrapulmonary CO2 concentrations as rapidly as 1.3 Hz; No oxygen sensitivity was observed with this receptor type, and halothane markedly depressed the discharge frequency. In response to intravenously injected acetazolamide they increased their discharge frequency and became almost totally insensitive to CO2, suggesting molecular per se is not the direct controller of receptor discharge; These receptors show many of the functional characteristics described for those in the avian lung. Afferent activity from both CO2 and mechanoreceptors could be elicited by electrically stimulating the lung surface. The CO2 receptors appeared to be organized in a receptive field covering more than 1 cm2 of lung surface, multiple receptors being innervated by a single afferent fiber. Activity in afferent fibers from mechanoreceptors could be evoked from only one distinct spot on the lung surface. Conduction velocities of afferent fibers from CO2 receptors ranged from 1 to 3 m-sec-1; from mechanoreceptors, from 1.9 to 5.2 m-sec-1.  相似文献   

8.
The molecular mechanisms governing the coupling selectivity of G protein-coupled receptors activated by peptide ligands are not well understood. To shed light on this issue, we have used the Gq/11-linked V1a and the Gs-coupled V2 vasopressin peptide receptors as model systems. To explore the structural basis underlying the ability of the V2 receptor to selectively recognize Gs, we systematically substituted distinct V2 receptor segments (or single amino acids) into the V1a receptor and studied whether the resulting hybrid receptors gained the ability to mediate hormone-dependent cAMP production. This strategy appeared particularly attractive since hormone stimulation of the V1a receptor has virtually no effect on intracellular cAMP levels. Functional analysis of a large number of mutant receptors transiently expressed in COS-7 cells indicated that the presence of V2 receptor sequence at the N terminus of the third intracellular loop is critical for efficient activation of Gs. More detailed mutational analysis of this receptor region showed that two polar V2 receptor residues, Gln225 and Glu231, play key roles in Gs recognition. In addition, a short sequence at the N terminus of the cytoplasmic tail was found to make an important contribution to V2 receptor/Gs coupling selectivity. We also made the novel observation that the efficiency of V2 receptor/Gs coupling can be modulated by the length of the central portion of the third intracellular loop (rather than the specific amino acid sequence within this domain). These findings provide novel insights into the molecular mechanisms regulating peptide receptor/G protein coupling selectivity.  相似文献   

9.
10.
There has been an exponential growth in interest in purinoceptors since the potent effects of purines were first reported in 1929 and purinoceptors defined in 1978. A distinction between P1 (adenosine) and P2 (ATP/ADP) purinoceptors was recognized at that time and later, A1 and A2, as well as P2x and P2y subclasses of P1 and P2 purinoceptors were also defined. However, in recent years, many new subclasses have been claimed, particularly for the receptors to nucleotides, including P2t, P2z, P2u(n) and P2D, and there is some confusion now about how to incorporate additional discoveries concerning the responses of different tissues to purines. The studies beginning to appear defining the molecular structure of P2-purinoceptor subtypes are clearly going to be important in resolving this problem, as well as the introduction of new compounds that can discriminate pharmacologically between subtypes. Thus, in this review, on the basis of this new data and after a detailed analysis of the literature, we propose that: (1) P2X(ligand-gated) and P2Y(G-protein-coupled) purinoceptor families are established; (2) four subclasses of P2X-purinoceptor can be identified (P2X1-P2X4) to date; (3) the variously named P2-purinoceptors that are G-protein-coupled should be incorporated into numbered subclasses of the P2Y family. Thus: P2Y1 represents the recently cloned P2Y receptor (clone 803) from chick brain; P2Y2 represents the recently cloned P2u (or P2n) receptor from neuroblastoma, human epithelial and rat heart cells; P2Y3 represents the recently cloned P2Y receptor (clone 103) from chick brain that resembles the former P2t receptor; P2Y4-P2Y6 represent subclasses based on agonist potencies of newly synthesised analogues; P2Y7 represents the former P2D receptor for dinucleotides. This new framework for P2 purinoceptors would be fully consistent with what is emerging for the receptors to other major transmitters, such as acetylcholine, gamma-aminobutyric acid, glutamate and serotonin, where two main receptor families have been recognised, one mediating fast receptor responses directly linked to an ion channel, the other mediating slower responses through G-proteins. We fully expect discussion on the numbering of the different receptor subtypes within the P2X and P2Y families, but believe that this new way of defining receptors for nucleotides, based on agonist potency order, transduction mechanisms and molecular structure, will give a more ordered and logical approach to accommodating new findings. Moreover, based on the extensive literature analysis that led to this proposal, we suggest that the development of selective antagonists for the different P2-purinoceptor subtypes is now highly desirable, particularly for therapeutic purposes.  相似文献   

11.
In young rats, AT2 receptors and AT2 receptor mRNA are discretely localized in neurons of the inferior olive, with highest expression in the medial nucleus. We previously detected AT2 receptor binding, but not AT2 receptor mRNA, in the molecular layer of the cerebellar cortex. To determine whether AT2 receptors are expressed in climbing fiber terminals which arise to the molecular layer from the inferior olive and innervate Purkinje cells, we chemically destroyed olivary neurons of 2-week-old rats by intraperitoneal (i.p.) injection of the neurotoxin 3-acetylpyridine. Lesions of the inferior olive reduced [125I]Sar1-Ang II binding to AT2 receptors and AT2 receptor mRNA levels in this area by 50%, and produced a similar decrease in AT2 receptor binding in the molecular layer of the cerebellar cortex. The extent of binding reduction was similar 3 days and 7 days after the lesion. 3-Acetylpyridine lesions did not change [125I]Sar1-Ang II binding to AT1 receptors in the molecular layer of the cerebellar cortex or AT1 receptor mRNA levels in Purkinje cells. AT2 receptor binding and AT2 receptor mRNA levels in the deep cerebellar nuclei were also not affected by 3-acetylpyridine. Our results support the hypothesis that AT2 receptors are produced by inferior olivary neurons and transported through climbing fibers to the molecular layer of the cerebellar cortex. The high expression of AT2 receptors in the inferior olivary-cerebellar pathway during a crucial time in postnatal development of climbing fiber-Purkinje cell connectivity suggest a role of AT2 receptors in the development of this pathway.  相似文献   

12.
The Gq/phospholipase C-linked human P2Y2 receptor was tagged at its amino terminus with the hemagglutinin A (HA) epitope sequence (P2Y2-HA) and stably expressed in 1321N1 human astrocytoma cells. Neither the pharmacological selectivity nor the signaling properties of the receptor were altered by the presence of the epitope. An enzyme-linked immunosorbent assay was developed to quantify cell surface levels of P2Y2-HA receptors using an anti-HA antibody. Incubation of cells with P2Y2 receptor agonists resulted in a concentration of agonist- and time-dependent decrease in cell surface immunoreactivity. Methodology for indirect immunofluorescence confocal microscopy was developed and applied to demonstrate that the agonist-promoted decreases in cell surface immunoreactivity paralleled increases in intracellular immunoreactivity. Agonist-induced internalization of P2Y2 receptors was demonstrated directly by prelabeling P2Y2-HA receptors with antibody before agonist challenge and then quantifying the movement of receptors from a cell surface to intracellular localization in the presence of agonist. Removal of agonist from the medium resulted in recovery of cell surface immunoreactivity to control levels within approximately 1 hr. Incubation of P2Y2-HA receptor-expressing cells with P2Y2 receptor agonists also resulted in receptor-specific desensitization of nucleotide-promoted inositol phosphate accumulation. This loss of responsiveness occurred more rapidly and to a greater extent than did the agonist-promoted loss of surface receptors. Inhibition of receptor internalization by reduction of temperature to 16 degrees had no effect on the capacity of nucleotides to induce P2Y2 receptor-specific desensitization. These results illustrate that the P2Y2 receptor undergoes agonist-promoted movement to an intracellular compartment. This receptor internalization is not required for agonist-induced desensitization.  相似文献   

13.
We have studied the distribution and regulation of the P2X3 receptor (a ligand-gated ion channel activated by ATP) in adult dorsal root ganglion (DRG) neurons using a polyclonal antibody. P2X3 receptor immunoreactivity was normally present in about 35% of L4/5 DRG neurons, virtually all small in diameter. In the dorsal horn, P2X3 receptor expression was restricted to the terminals of sensory neurons terminating in lamina IIinner. P2X3 receptors were expressed in approximately equal numbers of sensory neurons projecting to skin and viscera but in very few of those innervating skeletal muscle. P2X3 receptors were found mostly in sensory neurons that bind the lectin IB4. After sciatic nerve axotomy, P2X3 receptor expression dropped by more than 50% in L4/5 DRG. Glial cell line-derived neurotrophic factor (GDNF), delivered intrathecally, completely reversed axotomy-induced down-regulation of the P2X3 receptor. We conclude that P2X3 receptors are normally expressed in nociceptive primary sensory neurons, predominantly the nonpeptidergic nociceptors. P2X3 receptors are down-regulated following peripheral nerve injury and their expression can be regulated by GDNF.  相似文献   

14.
Since the cloning and expression of many of the G protein-coupled receptors during the 1980s, there has been a massive increase in our understanding of many aspects of their function. The use of molecular biology to engineer and express mutant receptors has made it possible to determine key amino acids involved in receptor function. Although advances in molecular biology have contributed greatly to our understanding of the pharmacology and structure of the five subtypes of muscarinic receptor, much remains to be learned about the factors that regulate their expression and function. This review by El-Bdaoui Haddad and Jonathan Rousell describes the current state of awareness and highlights recent advances made in the elucidation of the mechanisms involved in muscarinic receptor regulation. Because most is known about the regulation of expression of the M2 receptor subtype, particular attention will be paid to it. Furthermore, this receptor subtype plays an important role in regulating acetylcholine output from airway cholinergic nerves, and there is substantial evidence from studies both in vivo and in vitro in human and animal models that these receptors are dysfunctional in asthma.  相似文献   

15.
Diadenosine polyphosphates present at the cytosol can be transported to secretory granules allowing their exocytotic release. Extracellularly, they can act through specific metabotropic or ionotropic receptors, or as analogues of P2X and P2Y nucleotide receptors. The specific ionotropic receptor P4 is present in synaptic terminals, and modulated by protein kinases (PK) A and C and protein phosphatases. Activation of PKA or PKC, directly or through membrane receptors, results in a decrease of affinity or in reduction of the Ca2+ transient respectively. Adenosine and ATP, both products of the extracellular destruction of diadenosine polyphosphates, acting through A1 or P2Y receptors respectively, are important physiological modulators at the P4 receptor.  相似文献   

16.
Observation that the G protein-coupled P2U receptor (P2Y2 receptor) is activated by UTP as well as ATP provided the first indication that a class of uridine nucleotide-responsive receptors might exist. This hypothesis was confirmed by our identification of a uridine nucleotide-specific receptor on C6-2B rat glioma cells and by the recent cloning of two uridine nucleotide-responsive receptors, the P2Y6 receptor [J. Biol. Chem. 270:26152-26158 (1995)] and the P2Y4 receptor [J. Biol. Chem. 270:30849-30852 (1995) and J. Biol. Chem. 270:30845-30848 (1995)]. The relative nucleotide selectivities of these uridine nucleotide-activated receptors have not been established. Therefore, we cloned and expressed the P2Y6 and P2Y4 receptors in 1321N1 human astrocytoma cells and compared their relative selectivities for UDP, UTP, and other uridine and adenine nucleotides with that of the P2Y2 receptor expressed in the same cells. These comparisons were made by measuring inositol phosphate accumulation under conditions in which the initial purity and stability of agonists were rigidly ensured and quantitatively assessed. The data indicate that the P2Y2 receptor is activated with similar potencies by ATP and UTP but not by ADP or UDP; the P2Y6 receptor is activated most potently by UDP but weakly by UTP, ATP, and ADP; and the P2Y4 receptor is activated most potently by UTP, less potently by ATP, and not at all by nucleotide diphosphates. Furthermore, the P2Y6 receptor, which displays a uridine nucleotide selectivity essentially identical to that of the uridine nucleotide-specific receptor in C6-2B cells, was shown to be natively expressed in C6-2B cells and to account for the uridine nucleotide responses originally identified in these cells. These results define the uridine nucleotide selectivity of three phospholipase C-linked receptors: a receptor that is selectively activated by UDP (P2Y6 receptor), selectively activated by UTP (P2Y4 receptor), and activated by UTP and ATP but not by diphosphate nucleotides (P2Y2 receptor).  相似文献   

17.
Four subtypes of bombesin receptors are identified (gastrin-releasing peptide receptor, neuromedin B receptor, the orphan receptor bombesin receptor subtype 3 (BB3 or BRS-3) and bombesin receptor subtype 4 (BB4)), however, only the pharmacology of the gastrin-releasing peptide receptor has been well studied. This lack of data is due in part to the absence of a general ligand. Recently we have discovered a ligand, 125I-[D-Tyr6,betaAla11,Phe13,Nle14]bombesin-(6-1 4) that binds to BRS-3 receptors. In this study we investigate its ability to interact with all four bombesin receptor subtypes. In rat pancreatic acini containing only gastrin-releasing peptide receptor and in BB4 transfected BALB cells, this ligand and 125I-[Tyr4]bombesin, the conventional gastrin-releasing peptide receptor ligand, gave similar results for receptor number, affinity for bombesin and affinity for the unlabeled ligand. In neuromedin B receptor transfected BALB cells, this ligand and 125I-[D-Tyr0]neuromedin B, the generally used neuromedin B receptor ligand, gave similar results for receptor number, neuromedin B affinity or the unlabeled ligand affinity. Lastly, in BRS-3 transfected BALB cells, only this ligand had high affinity. For all four bombesin receptors this ligand had an affinity of 1-8 nM and was equal or greater in affinity than any other specific ligands for any receptor. The unlabeled ligand is specific for gastrin-releasing peptide receptors on rat pancreatic acini and did not inhibit binding of 125I-cholecystokinin octapeptide (125I-CCK-8), 125I-vasoactive intestinal peptide (125I-VIP) or 125I-endothelin to their receptors. The unlabeled ligand was an agonist only at the gastrin-releasing peptide receptor in rat acini and did not interact with CCK(A) receptors or muscarinic M3 acetylcholine receptors to increase [3H]inositol phosphates. These results demonstrate 125I-[D-Tyr6,betaAla11,Phe13,Nle14]bombesin-(6-1 4) is a unique ligand with high affinity for all subtypes of bombesin receptors. Because of the specificity for bombesin receptors, this ligand will be a valuable addition for such pharmacological studies as screening for bombesin receptor agonists or antagonists and, in particular, for investigating BRS-3 cell biology, a receptor for which no ligand currently exists.  相似文献   

18.
Dopamine D2 receptor agonists are commonly used in the control of PRL-secreting adenomas, and the sensitivity of dopamine agonists during long term therapy is exquisite. However, the molecular mechanisms responsible for the maintenance of this cellular sensitivity to dopamine agonists remain poorly understood. In the present study, we examined the agonist-induced regulation of the human D2L receptor expressed to a specific activity of approximately 1 pmol receptor/mg protein in Sf9 insect cells. Treatment of D2L receptor-expressing cells with dopamine for up to 3 h resulted in no detectable change in the ligand-binding properties of the receptor and a approximately 120-fold reduction in the potency, but not the efficacy, of D2L receptors to mediate dopamine inhibition of forskolin-stimulated adenylyl cyclase activity. This resistance of the D2L receptor to agonist-induced desensitization was accompanied by a approximately 28% translocation of intracellular D2L receptors to the cell surface, as quantified by cellular fractionation and radioligand binding and visualized by whole cell immunocytochemical staining and confocal microscopy. Immunoblot analysis of the P2 membrane fraction revealed that surface D2L receptors comprised monomers and dimers. Treatment of D2L receptor-expressing cells with the protein synthesis inhibitor cycloheximide significantly reduced the basal expression level of receptors, but did not block the agonist-induced up-regulation of receptors. Longer periods of dopamine exposure for 24 h brought about a small increase in surface receptor density. However, when these studies were conducted in the presence of cycloheximide, receptor density was marginally reduced, suggesting that receptor synthesis accounts for the maintenance of cellular receptor density under these conditions. We conclude that the resistance of the D2L receptor-coupled adenylyl cyclase system to agonist-induced desensitization is attributed to the up-regulation of surface receptors after the translocation of existing intracellular receptors and de novo receptor synthesis.  相似文献   

19.
The naturally occurring tachykinins, substance P, neurokinin A and neurokinin B, induce the formation of inositol phosphates or cAMP in a variety of tissues but their effects on neurons have not been resolved. We used primary cultures of neonatal rat spinal cord to determine whether neurokinin receptors mediate changes in these second messengers in spinal neurons. We found that substance P, neurokinin A and neurokinin B induced the formation of inositol phosphates in a concentration-dependent manner with similar potencies (EC50S: 3.6, 5.7 and 21.3 nM, respectively), but at concentrations tested (0.1-1.0 microM) these peptides had no effect on cAMP levels. All three tachykinins induced the formation of inositol phosphates predominately by activation of neurokinin1 receptors. CP-96,345 and WIN 51,708, neurokinin1 receptor antagonists, attenuated the response to substance P, neurokinin A and neurokinin B. GR 103,537, a neurokinin2 receptor antagonist, had no effect on the responses induced by any of the tachykinins. Furthermore, the selective neurokinin1 receptor agonist, GR-73632, induced the formation of inositol phosphates in a concentration-dependent manner, whereas the selective neurokinin2 receptor agonist, GR-64349, generated inositol phosphates only at the highest concentration tested (10 microM). Senktide, a neurokinin3 receptor agonist, did not induce the formation of inositol phosphates at any of the concentrations tested (0.01-10 microM). Inositol phosphate formation appeared to be due to a direct effect of the tachykinins on neuronal neurokinin1 receptors. These results suggest that biological responses in spinal neurons following activation of neurokinin1 receptors are mediated mainly by the hydrolysis of phosphoinositol 4,5-bisphosphate to form inositol 1,4,5-trisphosphate and diacylglycerol. It remains to be determined which of these second messengers mediates the increased neuronal excitability and depolarization that occurs in response to substance P.  相似文献   

20.
We have previously shown that the number of glucocorticoid receptors (GR) per cell in malignant lymphoblasts from children with newly diagnosed pre-B- and early pre-B-cell acute lymphoblastic leukemia (ALL) has a positive correlation with the probability of successful remission induction (Quddus et al, Cancer Res, 45:6482, 1985). We report now on the long-term outcome for these patients treated on a single protocol with 3 different treatment arms, all of which included glucocorticoid pulses during maintenance therapy. GR were quantitated in leukemic cells from 546 children with ALL at the time of diagnosis. Immunophenotyping studies were performed on all specimens. Prior studies showed that in pre-B- and early pre-B-cell ALL, successful remission induction was associated with a median GR number of 9,900 sites/cell, whereas induction failure was associated with a median receptor number of 4,800 sites/cell. Long-term follow-up of these patients shows an association between higher GR number and improved prognosis. The 5-year event-free survival of 61.0% (SE 2.8%) for patients whose leukemic cells had greater than 8,000 receptors/cell and 47.3% (SE 3.3%) for those with less than 8,000 receptors/cell is significantly different (P < .001). This difference remains significant when adjusted multivariately for blast immunophenotype and clinical risk factors (P < .001) or for treatment type (P < .001). We conclude that GR number greater than 8,000 sites/leukemic cell is a favorable prognostic marker for children with acute lymphocytic leukemia. This finding offers deeper insights into molecular mechanisms of anti-leukemia therapy and suggests that manipulation of steroid receptor number might augment the antitumor response, thus opening new avenues for basic and clinical research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号