首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
纳米TiO2/PTFE复合材料的干摩擦磨损性能   总被引:2,自引:0,他引:2  
史丽萍 《塑料工业》2005,33(1):49-51
利用磨损试验机、扫描电子显微镜等方法研究了表面处理与未处理纳米TiO2(质量分数为6%)填充聚四氟乙烯(PTFE)复合材料的干摩擦性能。结果表明,纳米TiO2能明显提高:PTFE耐磨性并改变其磨屑形成机理。表面处理纳米TiO2在PTFE中能较均匀分散。纳米TiO2填充PTFE复合材料的摩擦系数比PTFE稍大,纳米TiO2表面处理与否对PTFE复合材料的摩擦系数影响不大,但表面处理纳米TiO2填充聚四氟乙烯耐磨性比PTFE有显著提高,表面处理与表面未处理纳米TiO2填充PTFE复合材料的耐磨性比PTFE可分别提高7倍和3倍左右。导致PTFE磨损的重要机理是粘着磨损。  相似文献   

2.
利用冷压烧结法制备了不同含量的聚四氟乙烯/纳米碳化硅(PTFE/纳米SiC)复合材料。采用MM-200型摩擦磨损试验机在干摩擦条件下考察了纳米SiC含量及载荷对PTFE/纳米SiC复合材料摩擦磨损性能的影响,借助于扫描电子显微镜观察分析了试样磨损表面形貌,并探讨了其磨损机理。结果表明,纳米SiC能够提高PTFE/纳米SiC复合材料的硬度和耐磨性,当纳米SiC质量分数为7%时,PTFE/纳米SiC复合材料的磨损量最小,摩擦系数也最小;随纳米SiC含量的增加,其摩擦系数有所增大;随着载荷的增大,PTFE/纳米SiC复合材料的磨损量增加。  相似文献   

3.
对纳米碳化钛(TiC)填充的聚四氟乙烯(PTFE)复合材料进行力学与摩擦学性能测试,研究纳米TiC质量分数、偶联剂处理对PTFE复合材料力学和摩擦磨损性能的影响,用扫描电子显微镜(SEM)对拉伸断口形貌进行观察,探讨复合材料增强机理.研究结果表明:纳米TiC的填充能提高PTFE复合材料的硬度、拉伸强度和耐磨性,但其冲击强度和减摩性能有所下降;偶联剂处理纳米TiC后,复合材料的拉伸强度、冲击强度、减摩性能有所提高.拉伸断口的微观分析表明:偶联剂处理纳米TiC在PTFE基体中有较好的分散性,与基体界面结合较好.  相似文献   

4.
表面处理纳米Al2O3填充PTFE复合材料的磨粒磨损性能   总被引:1,自引:0,他引:1  
利用自制销-盘式磨粒磨损试验机,测定聚四氟乙烯(PTFE)及其表面处理与未处理纳米氧化铝(Al2O3)填充聚四氟乙烯复合材料试件在干摩擦滑动条件下的磨粒磨损质量损失。考察了载荷、磨粒、转速等参数的变化对试件摩擦学性能的影响。采用扫描电子显微镜观察、分析试件磨损表面形貌及磨损机理。结果表明,纳米Al2O3可以提高PTFE耐磨性。表面处理纳米Al2O3在PTFE中能较均匀分散,其耐磨性比相同含量但未经表面处理的纳米Al2O3填充PTFE高。导致PTFE复合材料磨粒磨损的重要机理是犁切破坏。  相似文献   

5.
顾红艳  路琴 《中国塑料》2009,23(9):44-48
对纳米AlN、Si3N4、TiN填充的聚四氟乙烯(PTFE)复合材料进行了力学性能与摩擦磨损性能测试,研究了纳米粒子种类和含量对PTFE力学性能和摩擦磨损性能的影响,用扫描电子显微镜(SEM)对拉伸断面形貌进行观察,探讨了复合材料的相关机理。研究结果表明,纳米AlN、Si3N4、TiN的填充均能提高PTFE的硬度和耐磨性;PTFE纳米复合材料的拉伸强度和断裂伸长率均有所下降,PTFE/TiN复合材料的降幅最小;3种纳米填料均使PTFE的冲击强度下降,PTFE/TiN和PTFE/Si3N4复合材料冲击强度的降幅较小;SEM分析表明,纳米TiN在PTFE基体中有较好的分散性,与PTFE基体界面结合较好,纳米AlN、Si3N4在PTFE基体中的分散性较差。  相似文献   

6.
王登武  王芳 《中国塑料》2013,27(10):27-31
采用高速混合、冷压烧结成型的方法制备了聚四氟乙烯/纳米氮化铝(PTFE/nano AlN)复合材料,考察了nano AlN含量对复合材料结晶性能、力学性能与摩擦性能的影响,并采用扫描电子显微镜对样品磨损表面进行分析。结果表明:随着nano AlN含量的增加,复合材料的结晶度呈现先增大后降低的趋势;nano AlN可显著提高复合材料的力学性能与耐磨损性能,当其含量为4 %时,耐磨损性能与纯PTFE相比提高了2个数量级。  相似文献   

7.
表面处理Al2O3增强PTFE基复合材料的摩擦学性能   总被引:2,自引:1,他引:2  
利用MM-200型摩擦磨损试验机考察了表面处理与未处理纳米Al2O3对填充聚四氟乙烯(PTFE)复合材料摩擦学性能的影响,采用扫描电子显微镜观察试样混合效果和磨损表面形貌并分析其磨损机理。结果表明:填充PTFE摩擦系数比PTFE略有增加。纳米Al2O3可以提高PTFE耐磨性,表面处理纳米Al2O3在PTFE中能较均匀分散,其耐磨性比相同含量但未经表面处理的纳米Al2O3填充PTFE高一倍。导致PTFE磨损的重要机理是切削和粘着磨损。  相似文献   

8.
采用硅烷偶联剂(KH550)及十六烷基三甲基溴化铵(CTAB)对凹凸棒石粉体进行改性,并将改性前后的凹凸棒石粉体与硅灰石复合填充至聚四氟乙烯(PTFE),制备PTFE复合材料。采用傅里叶红外光谱仪(FTIR)、扫描电子显微镜(SEM)、邵氏硬度计、环块摩擦磨损试验机、万能试验机对改性凹凸棒石粉体的理化性能及复合材料摩擦学性能进行表征。结果表明:凹凸棒石及硅灰石的加入可以降低复合材料的磨损率。经CTAB改性的凹凸棒石与硅灰石填充至PTFE,复合材料的邵氏硬度增至70,磨损率降至1.54×10-6 mm3/(N·m),压缩性能提高40%左右。对凹凸棒石进行表面改性,可提高粉体与PTFE基体的界面结合,从而改善复合材料摩擦学性能和力学性能。  相似文献   

9.
以纳米碳化硅(SiC)、微米SiC及粉状SiC纤维填充聚四氟乙烯(PTFE)复合材料,对PTFE复合材料进行力学和摩擦学性能测试,分析对比不同粒径填料及其质量分数对PTFE复合材料力学和摩擦磨损性能的影响.用扫描电子显微镜(SEM)对拉伸断口形貌进行观察,探讨了复合材料增强机理.对比研究结果表明:不同粒径的SiC均能提高复合材料的硬度和耐磨性,SiC纤雏/PTFE复合材料有较高的拉伸强度和断裂伸长率,其综合性能最好.拉伸断口的微观分析表明:SiC纤维与PTFE界面粘结性能较好,对PTFE复合材料性能有一定的增强效果.  相似文献   

10.
路琴 《中国塑料》2009,23(3):28-31
用摩擦磨损试验机对纳米碳化硅(SiC)及其与石墨、二硫化钼(MoS2)混合填充聚四氟乙烯(PTFE)复合材料在干摩擦条件下与45#钢对磨时摩擦磨损性能进行了研究,用洛氏硬度计对PTFE及其复合材料的硬度进行了测量,用扫描电子显微镜对PTFE复合材料磨损表面进行了观察。结果表明,纳米SiC的加入能提高PTFE复合材料的硬度和耐磨性,纳米SiC与MoS2混合填充会使PTFE复合材料的耐磨性提高更多,特别是在载荷增大时其耐磨效果更好。纳米SiC填充PTFE复合材料的摩擦因数比纯PTFE大,且随载荷增加有所减小, MoS2、石墨的加入可降低PTFE的摩擦因数。  相似文献   

11.
采用硅灰石纤维(WF)、青铜粉、石墨填充改性聚四氟乙烯(PTFE),制备了PTFE摩擦材料。结果表明,与用作密封件的传统改性PTFE材料相比,采用WF、青铜粉与石墨复合改性的PTFE材料,具有较好的抗磨损性能,对对磨材料损伤较轻微,具有较好的硬度,能用作长期使用的密封材料。  相似文献   

12.
以强酸氧化后不同含量的碳纳米管(CNTs)为填料制备了聚四氟乙烯(PTFE)/CNTs复合材料,研究其摩擦磨损情况。结果表明:CNTs填充质量分数为0,1%,3%,5%,7%时,PTFE/CNTs复合材料的摩擦系数随转速的增大而增大;20,40,60,80 r/min转速下,复合材料摩擦系数随碳纳米管填充质量分数的增加先增大后减小,当填充量为5%时,各转速下的摩擦系数均达到最大值。三维视频显微镜观察样品的表面磨痕深度并计算试样平均体积磨损率,发现填充CNTs可显著降低复合材料体积磨损率,当填充量大于5%后,复合材料体积磨损率增大。扫描电子显微镜观察发现:CNTs质量分数小于5%时,CNTs有效抑制PTFE的犁削,这种抑制作用随CNTs质量分数增大而增大,当质量分数为7%时,PTFE/CNTs复合材料犁削加剧,其原因为CNTs发生团聚,对PTFE分子链的约束作用弱化,使得分子链被拉出结晶区域。  相似文献   

13.
刘峰  唐帅 《上海塑料》2022,50(1):38-44
采用直径为3.0μm的短玻纤(GF)(GF质量分数为20%)增强改性聚苯醚(MPPO),将其与粒径为5~7 μm的聚四氟乙烯(PTFE)微粉和甲基苯基硅油构成摩擦因数较低的耐磨体系.通过熔融共混法制备PTFE改性GF增强MPPO材料(简称MPPO/20%GF复合材料).对MPPO/20%GF复合材料的力学性能、热变形温...  相似文献   

14.
针对聚四氟乙烯(PTFE)导热性能和耐磨损性能较差的问题,将石墨烯经过氧化氢预处理后,再用硅烷偶联剂KH550对其进行表面改性,然后采用冷压烧结法制备了PTFE/石墨烯复合材料,研究了不同用量下改性和未改性石墨烯对复合材料电性能、导热性能和摩擦磨损性能的影响。结果表明,随着石墨烯用量增加,复合材料的体积电阻率逐渐下降,但在石墨烯质量分数为0%~2%时,复合材料体积电阻率基本处于同一数量级,仍为绝缘材料;当石墨烯质量分数由0%增加至2%时,复合材料的导热系数明显提高,磨损量明显降低,而摩擦系数先升高后降低,但变化幅度较小。与未改性石墨烯相比,KH550改性石墨烯填充的复合材料具有更高的导热性能和摩擦磨损性能。  相似文献   

15.
贾志宁  闫艳红  郝彩哲 《塑料》2014,43(5):54-57
以聚四氟乙烯(PTFE)为填料,聚酰亚胺(PI)为基体,通过机械冷压法制备了聚酰亚胺/聚四氟乙烯(PI/PTFE)自润滑复合材料。研究了PTFE在复合材料中质量分数对该材料和金属试件对磨时摩擦学性能的影响。结果表明:在一定质量范围内PTFE的加入对于提高复合材料耐磨性具有积极的促进作用。当PTFE质量分数为30%时,PI/PTFE复合材料磨损率最低。和纯PI相比,填充PTFE的复合材料耐磨性提高3个数量级。对试件磨损形貌的分析表明:在对偶面形成转移膜的连续性直接影响PI/PTFE复合材料的摩擦磨损行为。对应最佳摩擦学性能时形成的自润滑转移膜更加连续、光滑和完整。  相似文献   

16.
Summary: A solid lubricant composite material was prepared by compression molding PTFE and acid treated nano‐attapulgite. The friction and wear tests were performed on a block‐on‐ring wear tester. Scanning electron microscopy (SEM), energy‐dispersive X‐ray spectrometer (EDS) and DSC were utilized to investigate material microstructures and examine modes of failure. Experimental results showed that there was no significant change in coefficient of friction, but the wear rate of the PTFE composite was orders of magnitude less than that of pure PTFE. Acid treated nano‐attapulgite was superior to untreated nano‐attapulgite in enhancing the wear resistance of PTFE. Moreover, the wear resistance of the composite increased monotonically with increasing treated attapulgite concentration. Investigation of transfer film and analysis of debris for PTFE and its composite showed that acid treated nano‐attapulgite filled to PTFE could facilitate formation of transfer film on the steel ring surface and inhibit breakage of PTFE molecular chain. The PTFE composite with higher heat absorption capacity exhibited improved wear resistance. Furthermore, the steel ring counterface abrasion was not found.

Effect of load on the wear rate of PTFE and its composites.  相似文献   


17.
陈向荣  姜文军 《塑料》2003,32(2):23-25
用M 2000型摩擦磨损试验机研究了干摩擦条件下硫酸钡、载荷、对磨时间对聚四氟乙烯复合材料摩擦磨损性能的影响。结果表明:在本实验采用的条件下,硫酸钡/PTFE复合材料的摩擦因数随着硫酸钡含量的增加而增大,抗磨损能力则有一个最佳含量;随着载荷的增加,材料的摩擦因数、磨损量和磨痕宽度也随之增大;磨损量随着对磨时间的延长,波动变小并趋于稳定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号