共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
电力负荷具有非线性和时序性的特点,为了深入研究各特征变量对于电力负荷预测的重要性,进而获得更高的电力负荷预测精度,提出了基于随机森林(random forest,RF)算法及长短期记忆网络(long short-term memory,LSTM)的混合负荷预测模型。首先根据时间日期因素及气候因素建立高维特征数据集作为随机森林模型的输入,通过随机森林算法筛选出重要特征量,并使其与历史负荷结合作为LSTM模型的输入,经过粒子群算法对LSTM模型进行参数寻优后得到RF-LSTM混合模型及负荷预测结果。使用该方法对河北电网某台区的电力负荷进行预测,结果表明该混合模型的预测精度比未经特征变量筛选的传统单一的随机森林算法、LSTM模型以及BP神经网络更为理想。 相似文献
4.
5.
针对电力负荷非线性、非平稳性、时序性等特点,提出了一种基于EMD-LN-LSTM的短期电力负荷预测模型。利用经验模态分解(EMD)将经数据预处理之后的原始电力负荷数据分解为有限个内涵模态分量(IMF)和一个残差分量,以降低负荷序列的非平稳性和复杂度。将分解后的各分量分别输入到长短期记忆网络(LSTM)中进行预测,同时利用层标准化(LN)对LSTM进行规范化处理,优化网络模型。对各分量预测值进行重组,求出最终的负荷预测结果。以多伦多真实数据为算例,分别使用EMD-LN-LSTM模型和其他模型进行预测,结果表明:EMD-LN-LSTM模型24 h平均绝对百分比误差相较于RNN模型、LSTM模型分别降低了3.600%、1.864%,而拟合优度均高于RNN模型、LSTM模型,表明该模型能够更好地拟合负荷曲线,具有较高的预测精度。 相似文献
6.
7.
通过卷积神经网络(Convolutional Neural Network, CNN)处理轴承一维时域或频域信号,难以提取具有代表性的非线性特征信息,且易忽略低层次信息。针对这一问题,基于多尺度特征提取,引入一种特征注意力机制,提出一种基于卷积双向长短期记忆网络(MSAM CNN BiLSTM)的轴承剩余寿命预测方法。基于西安交通大学(Xi′an Jiao Tong University,XJTU)轴承数据集中的3组数据对MSAM CNN BiLSTM、LSTM、CNN LSTM和MSAM CNN LSTM 4种方法的预测误差进行对比分析。结果表明:MSAM CNN BiLSTM方法在3组数据集中的预测误差均小于其他3种方法,说明该模型能同时学习数据中的低层次与高层次信息,可有效提高轴承的剩余寿命预测精度。 相似文献
8.
为实现选择性催化还原系统(selective catalytic reduction,SCR)尿素喷射量的精确控制,构建并评估了一套利用遗传算法(genetic algorithm,GA)优化长短期记忆(long short term memory,LSTM)神经网络的柴油机瞬态NOx排放预测模型。针对柴油机瞬态运行特点,选择柴油机NOx排放的主要影响因素进行相关性分析,确定模型的输入变量;为避免人为选取参数对神经网络预测性能的不良影响,采用遗传算法优化LSTM神经网络的参数,建立预测柴油机瞬态NOx排放的GA-LSTM模型;最后对预测模型进行了性能测试。结果表明,该模型具有较好的预测能力。 相似文献
9.
风功率的准确预测对电力系统的规划、调度运行等方面均具有重要意义。该文以风功率预测误差最小为目标,提出了一种基于双向长短期记忆深度学习模型的短期风功率预测方法,包括3层(输入层、隐含层和输出层)网络结构的详细设计以及网络训练过程。输入层负责对原始数据进行预处理以满足网络输入要求,隐含层采用双向长短期记忆单元构建以提取输入数据的非线性特征,输出层提供预测结果,网络训练采用Adam优化方法。在此基础上,基于实际风电场采集数据为算例,对该文所提出模型进行训练与测试,验证了该文所提方法的可行性与优越性。 相似文献
10.
11.
12.
13.
三板溪水电站大坝监测系统已经正常运行13年,主要采用人工几何水准测量了解大坝变形量和运行状况,对大坝进行沉降变形监测是为了及时掌握大坝的运行状态,如有发现异常情况,及时做出有效措施,确保大坝安全运行.利用沉降观测资料,分析三板溪水库大坝多年的沉降数据,绘制沉降过程线,沉降分布图及测点沉降回归拟合曲线.通过沉降资料分析,... 相似文献
14.
基于灰色系统理论,建立了进行高面板堆石坝坝体沉降预测的GM(1,1)模型,并用该模型对公伯峡面板坝的坝体沉降进行了灰色预测,结果表明,运用该模型对高面板堆石坝的坝体沉降进行预测是可行的,预测结果也是较为合理的。 相似文献
15.
16.
鉴于通常采用统计方法预测土石坝沉降时往往假定同一分区的坝料为均质同密度的,但却忽略了实际压实质量差异导致的坝料密度空间分布的不均性问题,利用数字大坝系统实时采集的各坝料分区的压实密度和填筑进度,建立了考虑各坝料分区实际压实质量的土石坝施工期沉降预测回归模型,并利用遗传和声算法对模型的回归系数进行寻优重估,以提高模型的精度。实例应用结果表明,基于遗传和声算法的考虑实际压实质量的土石坝沉降预测模型的计算结果与实际情况更为接近,为土石坝施工期沉降预测提供了一种新途径。 相似文献
17.
18.
19.
20.
针对高拱坝变形问题,提出应用粒子群算法优化高斯过程回归参数的高拱坝变形预测模型,基于高斯过程回归可将低维非线性关系通过核函数投射到高维线性空间的特点,利用高斯过程回归模型来表征水压、温度、时效等因素与坝体变形之间的非线性关系;同时针对迭代求解高斯过程回归模型的超参数效率低的问题,采用粒子群优化算法全局搜索模型超参数,提高了求解效率。对某高拱坝径向位移的拟合预测结果表明,粒子群优化高斯过程回归模型能较好地表征输入因子与变形之间的关系,预测坝体变形,误差在工程允许范围内,可应用于坝体变形预测分析中。 相似文献