首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
介绍了碳材料、过渡金属氧化物材料、导电聚合物及复合材料的研究现状以及各类材料的储能机理和作为超级电容器材料的基本要求,提出了未来超级电容器材料的研究方向。  相似文献   

2.
冯晨辰  吴爱民  黄昊 《材料导报》2016,30(1):143-149
多孔碳材料作为双电层电容器的主要电极材料,已成功应用于商业化超级电容器。但作为电极材料,纯碳材料表面疏水、内阻较大、电容较低等缺点使其进一步发展受到制约。近年来,随着超级电容器的迅速发展,氮掺杂多孔碳材料作为其电极材料引起研究人员的广泛关注,并采用不同的制备方法成功合成了一系列结构不同、性能优异的氮掺杂碳材料。基于超级电容器氮掺杂多孔碳电极材料的最新研究进展,首先介绍了氮在碳材料中的基本存在形式及对碳电极材料性能的影响,然后重点评述了氮掺杂碳电极材料的制备,最后总结了超级电容器氮掺杂碳材料的发展趋势。  相似文献   

3.
周建新  沈湘黔 《功能材料》2004,35(Z1):1020-1023
超级电容器作为储能器件,与传统物理电容器相比较明显地提高了比容量和比能量,而与二次电池相比,虽然比能量低,但其比功率却有着数量级的增加.本文综述了用于制备超级电容器的三类电极材料碳材料、金属氧化物材料和导电聚合物材料的研究进展.  相似文献   

4.
超级电容器电极材料   总被引:5,自引:0,他引:5  
本文综述了碳基材料、金属氧化物及水合物材料和导电聚合物材料作为超级电容器电极材料的最新研究进展。  相似文献   

5.
超级电容器是一种具有优异电化学性能的新型储能装置,文章介绍了超级电容器的储能机理和优点,论述了碳基材料、金属氧化物材料及导电聚合物材料的研究进展和作为超级电容器电极材料的要求,对未来的电极材料的研究方向作出了展望。  相似文献   

6.
论述了碳布为基底的超级电容器的电极材料分类、电极材料的制备方法及改性等,并介绍了国内外该领域的研究进展。  相似文献   

7.
综述了多孔碳电极材料,金属氧化物、嵌锂化合物、导电聚合物等电化学活性电极材料,以及由这些材料制备的复合电极材料的研究进展。  相似文献   

8.
超级电容器用活性炭电极材料的研究进展   总被引:3,自引:3,他引:0  
活性炭因具有制备简单、成本低、比表面积大、导电性好以及化学稳定性高等特点,作为超级电容器电极材料已得到广泛应用.论述了活性炭电极超级电容器的工作原理及活性炭物化性质对超级电容器电化学性能的影响,介绍了活性炭电极材料的最新研究进展,展望了其应用前景,指出寻找新炭源及活化技术、探索活性炭孔结构和表面性质的有效控制手段、开发活性炭复合材料等是该领域今后研究的重点方向.  相似文献   

9.
作为一种介于电池和传统电容器之间的新型储能装置,超级电容器在性能方面很大程度上缩小了两者之间的差距。总结了适用于超级电容器的各种电极材料,按照储能机理的差异对其进行分类,总结了不同类型超级电容器的最新研究成果,并举例说明了不同类型超级电容器的优缺点。  相似文献   

10.
超级电容器以其高功率、长周期使用寿命、环保等独特性能受到人们的广泛关注。决定超级电容器电荷存储的最关键因素是电极材料的特性。首先简要介绍了电容器的电荷储存机理。其次详细介绍了金属有机骨架材料(MOFs)、共价有机骨架材料(COFs)、二维过渡金属碳(氮)化物(MXenes)、金属氮化物(MN)、黑磷(BP)和有机分子电极材料等有望获得高能量密度和功率密度的新兴电极材料,以及最新制作的对称/非对称超级电容器的能量、电容、功率、循环性能和倍率性等参数。研究表明,COFs有望成为新一代廉价、绿色、可持续、多功能的储能装置的有机电极候选材料,其电化学性能仍有很大的提高空间。重点介绍了MOFs、COFs、MN、BP及近年来新型有机电极材料在超级电容器中的应用。最后,对超级电容器未来的发展和关键技术的挑战进行了展望。  相似文献   

11.
肖国庆  勾黎敏  丁冬海 《材料导报》2018,32(19):3309-3317
碳电极是超级电容器的关键材料,在很大程度上决定了超级电容器的性能,其发展趋势是高比表面积、高堆积密度、高中孔率、高电导率、高纯度和高性价比以及良好的电解液浸润性(即"六高一良好")。目前,活性碳纤维、碳凝胶、碳纳米管、模板碳等各种碳材料作为超级电容器电极材料的研究均有报道,但较低的比电容和相对较低的体积密度限制了它们在高能量需求的超级电容器电极方面的实际应用。为解决上述问题,关于具有高比表面积的多孔碳材料的研究逐渐活跃起来,特别是一些免活化的制备方法如共混聚合物裂解法、微乳液模板溶胶-凝胶聚合法及模板法等。然而,共聚混合物的制备、超临界干燥、模板的去除等使以上免活化制备方法较传统方法更为复杂。用聚偏二氯乙烯(PVDC)作为前驱体制备多孔碳可实现脱氯-活化一步完成。PVDC基碳作为超级电容器电极材料的优势在于:(1)来源广、成本低;(2)PVDC高碳密度的长链构型可促进芳香环化,与小分子相比,其所需碳化能量低,制备多孔碳材料无需额外活化过程;(3)以PVDC为碳前驱体比以其他材料为前驱体制备的多孔碳材料具有较高的比电容,目前PVDC基碳电极的比电容可达400F·g~(-1)。然而,高性能超级电容器的碳电极材料既要有高比表面积,又要有与电解液离子尺寸相适应的孔径,二者彼此制约。因此,目前研究的重点是在更微观层面上实现碳材料微观结构的调控与优化。目前,超级电容器用PVDC基碳电极的制备方法可分为脱氯-活化多步法与脱氯-活法一步法。脱氯-活化多步法是将PVDC直接机械研磨或高温热解,接着在不同活化作用后得到多孔碳材料的方法。此法得到的多孔碳具有较高的比表面积,但制备过程复杂。模板法不需要额外活化作用,但仍需两步才可得到多孔结构,获得的多孔碳材料虽然具有比表面积大、孔体积大及分级孔径分布的优点,但比电容相对较低。PVDC结构特殊,在高温热解或机械研磨过程中加入强碱,可实现脱氯-活化一步完成,得到PVDC基多孔碳材料,该法工序简单,脱氯率较高,且不会破坏PVDC的固有结构。此外,PVDC连接在亚乙烯基上的氯元素活性高,与含N-/O-聚合物中的N-/O-相比更易离开基团,可在较低温度实现脱氯碳化,且脱氯后的空位对杂质原子较敏感,易实现掺杂。本文分别从PVDC脱氯-活化多步碳化、脱氯-活化一步碳化及氮掺杂三方面综述了超级电容器用PVDC基碳电极的孔结构、比表面积及电化学性能方面的研究进展,并对超级电容器用PVDC基碳电极的研究进行了展望。  相似文献   

12.
分别以酚醛树脂和煤沥青泡沫碳为原料,经水蒸气活化、研磨制得比表面积和粒径相近的活性碳粉.采用扫描电镜、BET吸附仪和恒流充放电测试仪对2种活性碳的结构进行了表征并研究了其充放电性能.结果表明,微孔的孔径分布对充放电性能有很大影响,提高比表面积的同时增大微孔的孔径,有利于提高活性碳电极的充放电容量和功率.  相似文献   

13.
生物模板法合成锂离子电池电极材料研究进展   总被引:1,自引:1,他引:0  
锂离子电池是一类极具潜力的新型二次化学储能器件,被广泛应用于便携式电子设备、电动交通工具和智能电网等领域。高性能电极材料的设计和合成是获得高能量密度、长循环寿命、高安全性锂离子电池的关键。文章针对锂离子电池电极材料存在制备工艺复杂、结构难以控制、活性物质利用率低、循环稳定性和倍率性能差等问题,从生物资源高效利用角度出发,结合生物材料尺寸均匀、形态多变、结构精密、环境友好等优点,综述了生物模板法合成锂离子电池电极材料的研究进展,并对该领域的发展方向进行了展望。  相似文献   

14.
Hybrid supercapacitors generally show high power and long life spans but inferior energy densities, which are mainly caused by carbon negative electrodes with low specific capacitances. To improve the energy densities, the traditional methods include optimizing pore structures and modifying pseudocapacitive groups on the carbon materials. Here, another promising way is suggested, which has no adverse effects to the carbon materials, that is, constructing electron‐rich regions on the electrode surfaces for absorbing cations as much as possible. For this aim, a series of hierarchical porous carbon materials are produced by calcinating carbon dots–hydrogel composites, which have controllable surface states including electron‐rich regions. The optimal sample is employed as the negative electrode to fabricate hybrid supercapacitors, which show remarkable specific energy densities (up to 62.8–90.1 Wh kg?1) in different systems.  相似文献   

15.
采用机械混合物理方法将电解MnO2进行细化并与活性炭组成复合电极材料。循环伏安、恒流充放电等测试结果表明,复合电极材电极具有更好的电化学可逆性和理想的电化学电容行为。当MnO2和活性炭混合物的平均粒径在3μm左右,并且其配比达到某一值时,电极呈现出良好的大电流充放电性能,解决了活性炭大电流充放电效果差的问题。  相似文献   

16.
The one‐step synthesis of porous carbon nanoflakes possessing a 3D texture is achieved by cooking (carbonization) a mixture containing two condiments, sodium glutamate (SG) and sodium chloride, which are commonly used in kitchens. The prepared 3D porous carbons are composed of interconnected carbon nanoflakes and possess instinct heteroatom doping such as nitrogen and oxygen, which furnishes the electrochemical activity. The combination of micropores and mesopores with 3D configurations facilitates persistent and fast ion transport and shorten diffusion pathways for high‐performance supercapacitor applications. Sodium glutamate carbonized at 800 °C exhibits high charge storage capacity with a specific capacitance of 320 F g?1 in 6 m KOH at a current density of 1 A g?1 and good stability over 10 000 cycles.  相似文献   

17.
超级电容器碳纳米管及其复合电极材料最新研究进展   总被引:1,自引:0,他引:1  
邓梅根  卢云  张治安  胡永达  杨邦朝 《材料导报》2004,18(Z1):89-90,102
超级电容器作为一种新型储能元件,具有比传统电容器高得多的能量密度和比电池大得多的功率密度以及超长的使用寿命等特点.碳纳米管由于具有良好的导电性和高比表面积而成为超级电容器的理想电极材料.综述了用作超级电容器电极材料的碳纳米管及其复合材料的结构、特性、电化学性能和基于该材料的超级电容器研究的新成果.  相似文献   

18.
电化学超级电容器电极材料的研究进展   总被引:11,自引:0,他引:11  
电化学超级电容器以其独特的大容量、大电流快速充放电和高的循环使用寿命等特点,受到世人的青睐,致使许多新型的电化学超级电容器电极材料相继被发现和应用.为进一步促进电化学超级电容器的发展,在综述了近年来出现的各种电化学超级电容器电极材料的基础上,提出按材料种类将其分为四大系列:碳材料系列、过渡金属氧化物系列、有机导电聚合物系列和其他系列.并就其各自的特点和性能进行了分析比较,得出了碳材料系列主要向高比表面积和可控微孔孔径方向发展和过渡金属氧化物系列主要向提高材料本身的利用率方向发展以及导电聚合物系列主要向无机、有机杂化方向发展的结论.  相似文献   

19.
Biomass-based porous carbon (BPC) with renewability and flexible nano/microstructure tunability has attracted increasing attention as efficient and cheap electrode materials for supercapacitors. To meet commercial needs, high mass-loading electrodes with high areal capacitance are preferred when designing supercapacitors. The increased mass percentage of active materials can effectively improve the energy density of supercapacitors. However, as the thickness of the electrode increases, it will face the following challenges including severely blocked ion transport channels, poor charging dynamics, poor electrode structural stability, and complex preparation processes. A bridge between theoretical research and practical applications of BPC electrodes for supercapacitors needs to be established. In this review, the advances of high mass-loading BPC electrodes for supercapacitors are summarized based on different biomass precursors. The key performance evaluation parameters of the high mass-loading electrodes are analyzed, and the performance influencing factors are systematically discussed, including specific surface area, pore structure, electrical conductivity, and surface functional groups. Subsequently, the promising optimization strategies for high mass-loading electrodes are summarized, including the structure regulation of electrode materials and the optimization of other supercapacitor components. Finally, the major challenges and opportunities of high mass-loading BPC electrodes in the future are discussed and outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号