首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 546 毫秒
1.
崔涛  &#  张卫华  王琰 《振动与冲击》2013,32(11):75-79
为了防止侧风环境下列车高速交会压力波对车体结构造成破坏,以及气动载荷冲击对运行安全性的影响,综合计算流体动力学的有限体积法和列车多体系统动力学仿真方法,从流固耦合关系出发,同时对侧风环境下列车高速交会的外流场和列车系统动力响应进行分析,从而考察会车压力波、气动冲击、车体响应和列车运行安全性。计算结果表明:背风侧列车会车压力波头波大于迎风侧列车,而尾波则小于迎风侧列车,最大压力波动出现在背风侧列车。侧风环境下列车高速交会时,彼此具有挡风作用,安全性指标出现波动,列车运行安全性短时间内有所改善。  相似文献   

2.
针对单层、腔室型两种形式的开孔波纹板风障,采用滑移网格方法分别模拟横风条件下高速列车通过风障区域的过程,分析了在横风和列车风耦合作用下风障周围的绕流流场特性、风障面板气动荷载的时域特性及横风与列车风耦合脉动压力的频域特性。结果表明:在高速列车行经风障区域的过程中,无横风时头车产生的冲击作用要大于尾车的;存在横风作用时,列车头车产生的气动冲击作用与横风作用形成对冲,抵消了部分横风能量,而列车尾车则与横风作用相叠加,放大了横风对风障的气动作用;单层风障通过改变横风流向起到挡风减载作用,而腔室型风障同时可在腔室内部及尾流形成大量小漩涡来消耗横风能量,使用腔室风障能显著降低单个风障面板的气动荷载;该研究中,横风与列车风耦合作用于风障的脉动压力以及气动荷载的主频谱峰值集中在0.5~5 Hz内。  相似文献   

3.
采用计算流体力学软件Fluent,选用RNGk-ε湍流模型,建立列车隧道交会时的二维动网格模型,对高速列车隧道交会引起的空气动力学效应进行了二维非定常数值模拟,分析列车交会时隧道内流速、压力分布变化规律.研究表明:两车交会时,两车中间部分压力值最小,靠近隧道壁面侧的压力较大,且两侧压力成对称分布;两车中间流场速度在0m...  相似文献   

4.
以市域铁路嘉闵线入口段隧道和迎宾三路站为例,研究有无列车停靠车站时,列车从隧道入口以160km/h速度突入隧道并越行通过车站时区间隧道和屏蔽门的压力变化。研究结果表明:无列车停站时,列车突入隧道入口段U型槽产生的初始压缩波传播到入口段隧道,引起的最大正压可达1215Pa;由于车站左端活塞风井的泄压作用,初始压缩波传到屏蔽门上最大正压仅440Pa;而列车通过右端活塞风井产生的压缩波传播到车站后的区间隧道时,最大正压可达1450Pa。有列车停站时,车站前后区间隧道内压力波幅值几乎无变化,但屏蔽门上压力略有上升,压力波幅值增加在10%内。  相似文献   

5.
基于计算流体动力学理论,采用数值模拟的方法计算了高速列车通过双线简支箱梁桥时的气动力系数,考虑了轨道超高引起的列车风攻角、列车位于桥梁的横向位置、风障高度以及风偏角等因素的影响。根据列车运行于不同平曲线线路时的受力特点定义了列车倾覆系数,并参考有关标准设定了倾覆系数的容许值。在侧风风速为30 m/s情况下,计算了列车以不同速度通过设置有不同高度风障的桥梁时的倾覆系数,并据此选择了最优风障高度。计算结果表明:迎风侧线路上列车气动力系数比背风侧线路大,风障相对较低时升力系数随列车风攻角增大而增大;对迎风侧轮轨接触轴线和背风侧轮轨接触轴线的倾覆系数随车速和风障高度的变化规律均相反,最优风障高度由对背风侧轴线的倾覆系数决定;当列车处于迎风侧线路上时需设置的风障高度均比处于背风侧线路时高,即迎风侧线路是双线桥梁风障高度设置的控制线路;对于主导风向稳定的弯道,侧风从弯道内侧吹向列车时,最优风障高度随车速的增大而增大,从弯道外侧吹向列车时则与之相反;对于主导风向不稳定的弯道,应取侧风从外侧和内侧吹入时需设置风障的较大者。  相似文献   

6.
高速列车隧道内交会压力波变化剧烈,产生较大的气动载荷,可能带来乘客舒适性、车体及部件和洞内固定设备气动疲劳破坏问题,给列车安全运行带来隐患。基于CFD软件,采用三维可压缩非定常湍流流动的流动模型压力修正算法和任意滑移界面网格技术,本文对高速列车隧道内等速和不等速交会压力波进行数值模拟,分析了列车交会过程车体外部压力场变化过程,较为详细描述了头头交会、头尾交会及尾尾交会时列车头尾部部位压差的变化过程,分析了等速和不等速交会时车外及洞内压力波的变化特性,初步给出了交会时变速度列车的负压峰值绝对值与车速的拟合关系式。  相似文献   

7.
随着列车速度不断提高,转向架对整车气动阻力的影响越来越大,也是研究轮轨关系及地面效应的基础。采用数值计算方法对有无转向架列车不同运行速度和横风风速下的气动特性进行了数值计算,研究了转向架对列车气动特性的影响。研究结果表明:当无横风时,有无转向架列车受到的气动阻力和升力均近似与列车运行速度的平方成正比,而转向架受到的空气阻力约占总阻力的25%,且随着列车速度的增加而增加,但增加幅度较小;横风对列车的气动阻力、气动升力、侧向力影响都很大,且相同横风下,考虑转向架时列车的气动阻力约为不考虑时的1.7倍。  相似文献   

8.
高畅  张继业  李田  孙瑶 《工程力学》2020,37(7):230-239
为了减缓高速列车通过隧道引起的压力波动对列车运行的影响,基于列车空气动力学研究了高速列车通过带有联络通道的隧道时的压力波特性。建立了3节编组高速列车数值仿真计算模型,基于三维、非定常、可压缩Navier-Stokes方程以及k-ε两方程湍流模型和滑移网格技术,数值模拟了高速列车通过联络通道隧道的气动特性,主要考虑设置联络通道后,联络通道面积、列车运行速度和不同通道间距对隧道压力波动的影响。研究结果表明:列车通过设有联络通道的隧道相比于无联络通道隧道的气动特性得到明显改善;通道对初始压力上升与下降抑制效果更加明显,对膨胀波的抑制更为突出;列车运行速度越高,通道面积越大,压力波回落越明显;联络通道的设置使压力波波形呈现局部锯齿状。提出了列车通过隧道时压力峰值的快速计算公式。  相似文献   

9.
随着地铁列车速度提升至160 km/h,隧道环境下地铁列车表面气动激励显著增强。应用大涡模拟对隧道内160 km/h地铁列车脉动流场结构和表面气动噪声源进行数值仿真,定量评估全封闭设备舱设计对地铁列车气动声学性能的优化效果。结果表明:全封闭设备舱设计能够疏导车底气流,使车底气流更多集中在转向架舱两侧溢出,同时引起车下主要涡结构尺度增大。对应的,列车整车车体气动噪声源能量减小约2.9%;其中头车、中车1分别增大5.7%和9.4%,中车2和尾车分别减小4.2%和13.8%,各节车体声源能量分布更加均匀;列车高频声源能量减小,整车800 Hz峰值频谱能量减小约4.0%。研究成果将为160 km/h地铁列车气动降噪设计提供参考。  相似文献   

10.
全封闭设备舱对隧道内160 km/h地铁气动声源影响#br#   总被引:1,自引:0,他引:1  
随着地铁列车速度提升至160 km/h,隧道环境下地铁列车表面气动激励显著增强。应用大涡模拟对隧道内160 km/h 地铁列车脉动流场结构和表面气动噪声源进行数值仿真,定量评估全封闭设备舱设计对地铁列车气动声学性能的优化效果。结果表明:全封闭设备舱设计能够疏导车底气流,使车底气流更多集中在转向架舱两侧溢出,同时引起车下主要涡结构尺度增大。对应的,列车整车车体气动噪声源能量减小约2.9 %;其中头车、中车1 分别增大5.7 %和9.4 %,中车2 和尾车分别减小4.2 %和13.8 %,各节车体声源能量分布更加均匀;列车高频声源能量减小,整车800 Hz峰值频谱能量减小约4.0 %。研究成果将为160 km/h地铁列车气动降噪设计提供参考。  相似文献   

11.
采用三维、非定常、可压缩RANS方程和k-ωSST湍流模型及重叠网格技术的数值仿真方法,对我国600 km/h高速磁浮列车明线交会横向气动性能进行研究.展示了明线交会过程中列车表面的压力变化特性,揭示了列车侧向气动力、偏航力矩和侧滚力矩的变化规律,分析了车体横向摆动和侧滚原因,研究了车速对横向气动性能的影响规律.结果 ...  相似文献   

12.
基于同步测压技术,以京沪高速铁路典型高架桥和CRH2列车为背景,研究风屏障对典型车桥组合状态下列车的风压分布和各面气动力分布特征的影响,以分析风屏障的气动影响机理,并从流体力学角度进行解释。研究结果表明:风屏障对上游列车气动特性影响较大,下游列车由于处于尾流中,受之影响较小;设置风屏障后,上游列车由于迎风面风压由正变负,使得该面的侧力与背风面相反,故使总体侧力减小,车顶平均风压显著减小,使得车顶升力约增大50%,背风面和车底风压变化较小;风屏障透风率及高度取值需根据具体环境进行优化,并需注意防风效果并不与减小平均风速等同。  相似文献   

13.
该文建立了箱梁表面压力与颤振导数之间的数学关系,探讨了表面压力的分布特性对箱梁颤振导数和颤振临界风速的影响。结合流固松耦合的计算方法,利用动网格技术模拟了箱梁的风致振动。采用分块分析方法研究了箱梁表面压力的局部特性对颤振导数以及系统振动能量的影响。研究结果表明:箱梁迎风侧风嘴附近的分布压力对模型振动的稳定性产生了不利的影响,而模型尾部的压力则有助于提高系统的颤振临界风速。当迎风侧的分布压力向模型尾部移动时,对箱梁颤振稳定性影响较大的颤振导数则会发生较显著的变化,箱梁的颤振临界风速也随之增加,因此断面迎风侧风嘴附近区域的分布压力对颤振导数和系统振动的稳定性影响最大。另外,迎风侧风嘴附近的区域也是振动系统吸收气动能量的主要部位,而箱梁尾部风嘴附近的区域则消耗系统的振动能量。箱梁表面压力与模型振动最大位移之间的相位差对颤振导数有较大影响,当相位差沿断面呈反对称分布,并使气动阻尼始终为负时,则有利于箱梁颤振的稳定性。  相似文献   

14.
研究借助气动-声学风洞试验平台,首先针对某高速列车的1:8缩尺比例的三车编组模型建立了气动噪声试验方法和突显不同的噪声源的模型处理方法,并结合流场外自由场传声器和传声器阵列的测量结果,分析了模型上的主要噪声源特性及对整个模型的贡献量大小。研究表明:转向架和受电弓噪声是模型的最主要噪声源,其次是车连接部位间隙,再次是鼻尖和排障器,最后是尾车,同时,并给出了这些噪声源的特性,这对于认识高速列车气动噪声和改善设计有重要的参考价值。研究也说明所提出的试验研究方法是一种研究高速列车气动噪声较为有效地方法。  相似文献   

15.
针对静态气密参数无法真实反映动车组过隧道时的气密性能问题和车内压力舒适性问题.基于一维可压缩不等熵非定常流动模型的广义黎曼变量特征线法,数值模拟车外压力;建立了高速列车通过隧道时模拟车内压力波的"当量泄漏面积"法.以京沪客运专线为背景,研究了中国某型号标准动车组的动态当量泄漏面积阈值随动车组编组长度、速度和是否交会的变...  相似文献   

16.
为研究复杂交通状态下车桥系统的气动特性,对某大跨度公铁两用桁架斜拉桥进行了节段模型风洞试验。测试了不同风攻角下单列车、两列车、三列车通过时车桥系统的三分力。研究了线路位置、桥塔、公路车流、双车及三车交会对车辆和桁梁三分力系数的影响。结果表明:当单列车从迎风侧线路向背风侧线路移动时,车辆和桁梁的阻力系数逐渐减小,但车辆的升力系数及桁梁的力矩系数在背风侧轨道达到最大;当列车通过桥塔,受遮挡车辆的平均表面风压会显著减小,当其位于迎风侧轨道时影响最明显,但在靠近桥塔边缘处的表面风压波动较为剧烈;双车交会时,车辆的阻力和升力系数随交会间距的增大而增大;三车交会时,位于迎风侧列车后方的车辆阻力和升力系数显著下降,中间车的升力系数最小且阻力系数为负数;随着桥上列车数量的增加,桁梁的阻力和升力系数逐渐增大,而力矩系数基本保持不变。  相似文献   

17.
汽车外表面气动噪声特性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
以荣威750为研究对象,通过声学风洞实验手段对车辆后视镜表面、侧窗表面及其附近流场,以及外场的气动噪声特性进行测试分析;在对数值计算结果验证分析之后,通过数值计算手段以流场脉动压力标准差为评价指标并结合速度场特征,分析车辆表面的压力脉动特性及其产生的原因,在此基础上对车辆表面的噪声大小和分布以及频率特性进行计算分析。研究表明车辆的气动噪声主要能量集中在中低频,频带较宽,不同部位特性差异较大;表面压力脉动是表面气动噪声产生的根本原因,压力脉动大的地方气动噪声亦大;气动噪声大的位置是发生气流分离,湍流运动比较剧烈的区域。就该款车而言,气动噪声主要出现在汽车头部上方、前后挡风玻璃边沿、车顶、A柱、侧窗、后视镜以及车尾和轮胎部分位置处。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号