首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
《Planning》2014,(22)
宁夏精养池塘以前一直是采用叶轮式增氧机增氧方式养殖,最近几年养殖池塘引进新型增氧方式——微孔管道增氧。为证明两种增氧方式那种更加有利于池塘养殖,笔者与相关同事于2014年5月份在宁夏泰嘉渔业有限公司进行了2种增氧方式对水产养殖的效果实验。并将试验结果总结如下,供同行们参考。  相似文献   

2.
《Planning》2016,(10)
为了解如何更好地治理黑臭河湖,本研究在对比了市面上的几种增氧机械特点后,设置多组对比试验,从水体含氧量的测定和水温的测定出发进行试验,以期对比曝气微孔增氧与机械增氧的区别。用多种不同的增氧方式对同一池塘进行测定(9—10月),获得池塘表层与底层的溶氧量、水温差等指标数据。结果表明,曝气微孔增氧技术具有更高的性价比,对于水中的溶氧量增加更有效果,同时对于时段性温差明显地区水层表层与底层的温差调节作用明显,有更强的降温效果。  相似文献   

3.
《Planning》2022,(1)
于2012年1—2月从结冰期到盛冰期,监测了渤海湾沿岸的盘锦大洼(1#池塘)、瓦房店北海(2#池塘)、瓦房店沙山(3#池塘)和黄海北部的丹东东港(4#池塘)4处养殖池塘的冰层厚度及冰下不同深度水体的水温、盐度、pH和溶解氧(DO)饱和度。结果表明:结冰期和盛冰期,1#池塘的冰层均较厚,分别为33.6、53.0 cm,3#池塘的冰层均较薄,分别为12.8、17.6 cm;结冰期,1#、2#、4#池塘的水温变化较小,分别为-1.6-1.8、-1.6-1.8、-1.6-1.7、-0.8-1.7、-0.8-1.2℃,3#池塘底层的水温变化较大,为-0.8-1.2℃,3#池塘底层的水温变化较大,为-0.8-1.4℃,而盛冰期,各养殖池塘均出现温跃层,但温跃层出现的位置和幅度不同;4#池塘水体的盐度在结冰期和盛冰期均较低,为26.4-1.4℃,而盛冰期,各养殖池塘均出现温跃层,但温跃层出现的位置和幅度不同;4#池塘水体的盐度在结冰期和盛冰期均较低,为26.430.0,而1#池塘水体的盐度在盛冰期较高,为33.530.0,而1#池塘水体的盐度在盛冰期较高,为33.534.9,从结冰期到盛冰期,1#池塘水体的盐度变化幅度较大,为29.734.9,从结冰期到盛冰期,1#池塘水体的盐度变化幅度较大,为29.734.9,平均变幅达4.5;各养殖池塘水体的pH变化相差较大,结冰期和盛冰期,1#池塘水体的pH均较高(8.6、8.5),4#池塘水体的pH均较低(7.2、7.5);结冰期和盛冰期,各养殖池塘水体的溶氧水平都出现了近饱和或过饱和状态,不存在养殖动物缺氧的现象。研究表明,温度变化可能对池塘中刺参的生理和存活产生一定影响,盐度变化可能对池塘中的菲律宾蛤仔产生影响,冬季如有大面积海冰发生时,可降低水体交换的频率,养殖池塘的深度以35034.9,平均变幅达4.5;各养殖池塘水体的pH变化相差较大,结冰期和盛冰期,1#池塘水体的pH均较高(8.6、8.5),4#池塘水体的pH均较低(7.2、7.5);结冰期和盛冰期,各养殖池塘水体的溶氧水平都出现了近饱和或过饱和状态,不存在养殖动物缺氧的现象。研究表明,温度变化可能对池塘中刺参的生理和存活产生一定影响,盐度变化可能对池塘中的菲律宾蛤仔产生影响,冬季如有大面积海冰发生时,可降低水体交换的频率,养殖池塘的深度以350400 cm为宜。  相似文献   

4.
《Planning》2017,(18)
<正>淡水池塘养鱼对水质的要求较高,对水质的调控是养鱼技术的关键,水质调控技术在池塘养殖中有着广泛的应用,所以本文就主要是对淡水池塘水质观测及调控技术进行了分析研究。1淡水池塘的水色观测淡水池塘的水色与池塘中的浮游生物的种类是有着密切的关系,所以这就需要我们每天要对池塘进行检查,通过肉眼就可以观察水体的颜色,在结合对水质的检测和生物学的测定,这样我们就可以发现池塘水体的理化、生物组成等变化来分析  相似文献   

5.
《Planning》2022,(6)
对一种新的养殖模式——池塘分区集群式清洁养殖的概念、原理与方法进行了论述。池塘分区集群式清洁养殖(partition cluster clean aquaculture in ponds,PCCA)模式是一种不同于传统混养的池塘养殖新模式,即在健康养殖条件下将人工投喂的鱼类集群圈养于池塘小范围区域(即集群养殖区)中,通过控制鱼类粪便的排泄区域(沉淀排污区),做到及时将粪便清除到池塘外污水处理区,以降低鱼类粪便、残饵等对水体的污染及溶解氧消耗,使池塘中大部分水体区转变为水质净化区域,并通过该种养殖模式的实例,对其存在的问题和开发前景进行了讨论。研究表明,采用池塘内分区、养殖鱼类集群、精确投饵和及时清除粪便及残饵的池塘清洁养殖新模式,产量高于传统养殖模式,可达到节水减排的目的。  相似文献   

6.
《Planning》2022,(2)
为解决池塘增氧装置水动力形成能力不足的问题,提出了一种新的设计方案。新设计基于双向输出传动机构原理,利用破水叶轮及空气中低阻偏心块的复合作用,在保障增氧能力的同时提升水动力影响范围,并对该摇摆式水动力装置在池塘的影响范围和增氧能力进行了测试。结果表明:该装置可以将水动力影响范围提升至4670 m2以上,高于3 k W和1.5 k W的叶轮式增氧机;同时在1.5 k W能耗下增氧能力为2.67 kg/h,并能达到3 k W叶轮式增氧机的66.7%,符合国家标准中对于1.5 k W增氧机的增氧能力要求。研究表明,新装置的水动力形成能力有明显提升,能够更好地解决池塘水产养殖增氧过程中水体循环能力不足的问题。  相似文献   

7.
《Planning》2017,(2)
为解决池塘增氧装置水动力形成能力不足的问题,提出了一种新的设计方案。新设计基于双向输出传动机构原理,利用破水叶轮及空气中低阻偏心块的复合作用,在保障增氧能力的同时提升水动力影响范围,并对该摇摆式水动力装置在池塘的影响范围和增氧能力进行了测试。结果表明:该装置可以将水动力影响范围提升至4670 m2以上,高于3 k W和1.5 k W的叶轮式增氧机;同时在1.5 k W能耗下增氧能力为2.67 kg/h,并能达到3 k W叶轮式增氧机的66.7%,符合国家标准中对于1.5 k W增氧机的增氧能力要求。研究表明,新装置的水动力形成能力有明显提升,能够更好地解决池塘水产养殖增氧过程中水体循环能力不足的问题。  相似文献   

8.
《Planning》2016,(9)
<正>一、适当控食夏天水温高,水中溶氧相对较少,过饱的饮食会增加水生动物的耗氧率而使水生动物易因缺氧死亡。同时在高温条件下,由于水生动物体质弱,摄食量本来也低于平时,而过量的投喂会造成剩余残饵污染水体而加速养殖水体的水质败坏。一般情况下,高温季节的投饲量控制在平时的60—70%,而遇闷热或雷阵雨天气,投饲量可减少到平时的40—50%。二、保持良好水质对养殖池塘应灌满塘水,鱼类养殖池塘水深达到1.8—  相似文献   

9.
《Planning》2022,(1)
<正> 该项目是原国家水产总局下达的,针对我国北方地区淡水养殖鱼类越冬成活率低的问题,采取以生物增氧为关键措施,在弄清越冬池理化因子、生物状况及其变化规律的基础上。在鱼类越冬水体中培养耐低温、适弱光照的浮游植物,利用其光合作用释放氧气来补充水中溶氧,促进鱼类安全越冬。  相似文献   

10.
《Planning》2018,(3)
<正>前言:海水池塘立体生态养殖模式是东港市近年来的主要养殖模式之一。立体生态养殖是根据生物间的共生互补原理在同一池塘中混养多种生物,让它们睡"上下铺",且互不打扰,实现生态平衡,是一种充分利用不同生物的生态匀性在池塘中的合理配养,以达到充分利用水体的空间、时间和饵料资源,提高池塘利用率的高效养殖模式,这种模式在发挥传统生态养殖优势的基础上,采用了现代养殖技术,不会因为一个品种产量的减少而影响整体收益。海  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号