首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Several G protein-coupled receptors that interact with pertussis toxin-sensitive heterotrimeric G proteins mediate Ras-dependent activation of mitogen-activated protein (MAP) kinases. The mechanism involves Gbetagamma subunit-mediated increases in tyrosine phosphorylation of the Shc adapter protein, Shc*Grb2 complex formation, and recruitment of Ras guanine nucleotide exchange factor activity. We have investigated the role of the ubiquitous nonreceptor tyrosine kinase c-Src in activation of the MAP kinase pathway via endogenous G protein-coupled lysophosphatidic acid (LPA) receptors or by transient expression of Gbetagamma subunits in COS-7 cells. In vitro kinase assays of Shc immunoprecipitates following LPA stimulation demonstrated rapid, transient recruitment of tyrosine kinase activity into Shc immune complexes. Recruitment of tyrosine kinase activity was pertussis toxin-sensitive and mimicked by cellular expression of Gbetagamma subunits. Immunoblots for coprecipitated proteins in Shc immunoprecipitates revealed a transient association of Shc and c-Src following LPA stimulation, which coincided with increases in Shc-associated tyrosine kinase activity and Shc tyrosine phosphorylation. LPA stimulation or expression of Gbetagamma subunits resulted in c-Src activation, as assessed by increased c-Src autophosphorylation. Overexpression of wild-type or constitutively active mutant c-Src, but not kinase inactive mutant c-Src, lead to increased tyrosine kinase activity in Shc immunoprecipitates, increased Shc tyrosine phosphorylation, and Shc.Grb2 complex formation. MAP kinase activation resulting from LPA receptor stimulation, expression of Gbetagamma subunits, or expression of c-Src was sensitive to dominant negatives of mSos, Ras, and Raf. Coexpression of Csk, which inactivates Src family kinases by phosphorylating the regulatory C-terminal tyrosine residue, inhibited LPA stimulation of Shc tyrosine phosphorylation, Shc.Grb2 complex formation, and MAP kinase activation. These data suggest that Gbetagamma subunit-mediated formation of Shc.c-Src complexes and c-Src kinase activation are early events in Ras-dependent activation of MAP kinase via pertussis toxin-sensitive G protein-coupled receptors.  相似文献   

2.
3.
The adapter protein Shc has been implicated in mitogenic signaling via growth factor receptors, antigen receptors and cytokine receptors. Recent studies have suggested that tyrosine phosphorylation of Shc may play a key role in T lymphocyte proliferation via interaction of phosphorylated Shc with downstream molecules involved in activation of Ras and Myc proteins. However, the sites on Shc that are tyrosine phosphorylated in response to TCR engagement and the ability of different T cell tyrosine kinases to phosphorylate Shc have not been defined. In this report, we show that during TCR signaling, the tyrosines Y239, Y240 and Y317 of Shc are the primary sites of tyrosine phosphorylation. Mutation of all three tyrosines completely abolished tyrosine phosphorylation of Shc following TCR stimulation. Our data also suggest that multiple T cell tyrosine kinases contribute to tyrosine phosphorylation on Shc. In T cells, CD4/Lck-dependent tyrosine phosphorylation on Shc was markedly diminished when Y317 was mutated, suggesting a preference of Lck for the Y317 site. The syk-family kinases (Syk and ZAP-70) were able to phosphorylate the Y239 and Y240 sites, and less efficiently the Y317 site. Moreover, co-expression of Syk or ZAP-70 with Lck resulted in enhanced phosphorylation of Shc on all three sites, suggesting a synergy between the syk-family and scr-family kinases. Of the two potential Grb2 binding sites (Y239 and Y317), Y239 appears to play a greater role in recruiting Sos through Grb2. These studies have implications for Ras activation and mitogenic signaling during T cell activation.  相似文献   

4.
Formation of a complex of the nucleotide exchange factor Sos, the SH2 and SH3 containing adaptor protein Grb2/Sem-5 and tyrosine phosphorylated EGF receptor and Shc has been implicated in the activation of Ras by epidermal growth factor (EGF) in fibroblasts: related mechanisms for activation of Ras operate in other cell types. An increase in the apparent molecular weight of Sos has been reported to occur after several minutes of receptor stimulation due to phosphorylation by mitogen-activated protein (MAP) kinases. We report here that treatment of human peripheral blood T lymphoblasts with phorbol esters causes a similar shift in mobility of Sos. This modification of Sos does not alter its ability to bind Grb2, but correlates with strong inhibition of the binding of the Sos/Grb2 complex to tyrosine phosphorylated sequences, either a tyrosine phosphopeptide in cell lysates or p36 in intact cells. This effect, along with the mobility shift of Sos, can be mimicked in vitro by phosphorylation of Sos by the mitogen-activated protein kinase, ERK1. A novel negative feedback mechanism therefore exists whereby activation of MAP kinases through Ras results in the uncoupling of the Sos/Grb2 complex from tyrosine kinase substrates without blocking the interaction of Sos with Grb2.  相似文献   

5.
SHIP is a SH2 domain-containing inositol polyphosphatase that is selectively tyrosine phosphorylated and associated with the adapter protein Shc in B lymphocytes upon co-crosslinking surface immunoglobulin and Fc gamma RIIB1. We previously observed that this stimulation condition is associated with a reduction in the interaction of Grb2 with phosphorylated Shc, an enhanced interaction of Shc with SHIP, and a block in the Ras signaling pathway. We proposed that the SH2 domain of SHIP competes with Grb2 in binding to phospho-Shc, resulting in a block in Ras signaling. To test this model, we examined the mode of SHIP-Shc interaction. Using recombinant Shc and SHIP interaction domains and purified Shc and SHIP phosphopeptides, we show that the interaction is bi-dentate such that the SH2 domain of SHIP recognizes phosphorylated Y317 and doubly-phosphorylated Y239/Y240 of Shc and the Shc PTB domain recognizes phosphorylated NPxpY motifs within SHIP. We observed no role for the Shc SH2 domain in the interaction. These findings are consistent with our earlier model that SHIP and Grb2 compete for binding to phospho-Shc and support the notion that, in addition to the hydrolysis of inositol phosphates and phospholipids, SHIP contributes to anti-proliferative biochemistry by blocking protein-protein interactions.  相似文献   

6.
By transient expression of both truncated forms of p52(SHCA) and those with point mutations in 293T cells, it has been shown that, in addition to Tyr-317, Tyr-239/240 is a major site of phosphorylation that serves as a docking site for Grb2.Sos1 complexes. In addition, analysis of epidermal growth factor (EGF)-induced activation of mitogen-activated protein kinase in 293T cells showed that the overexpression Shc SH2 or phosphotyrosine binding (PTB) domains of ShcA alone has a more potent negative effect than the overexpression of the forms of ShcA lacking Tyr-317 or Tyr 239/240 or both. In transiently transfected PC12 cells, the ShcA PTB domain and tyrosine phosphorylation in the CH1 domain, especially on Tyr-239/240, are crucial for mediating nerve growth factor (NGF)-induced neurite outgrowth. These findings suggest that the EGF and NGF (TrkA) receptor can utilize Shc in different ways to promote their activity. For EGF-induced mitogen-activated protein kinase activation in 293T cells, both Shc PTB and SH2 domains are essential for optimal activation, indicating that a mechanism independent of Grb2 engagement with Shc may exist. For NGF-induced neurite outgrowth in PC12 cells, Shc PTB plays an essential role, and phosphorylation on Tyr-239/240, but not on Tyr-317, is required.  相似文献   

7.
Shc proteins are important substrates of receptor and cytoplasmic tyrosine kinases that couple activated receptors to downstream signaling enzymes. Phosphorylation of Shc tyrosine residues 239 and 317 leads to recruitment of the Grb2-Sos complex, thus linking Shc phosphorylation to Ras activation. We have used phosphorylated peptides corresponding to the regions spanning tyrosine 239/240 and 317 of Shc in an expression library screen to identify additional downstream targets of Shc. Here we report the identification of Gads, a novel adaptor protein most similar to Grb2 and Grap that contains amino and carboxy terminal SH3 domains flanking a central SH2 domain and a 120 amino acid unique region. Gads is most highly expressed in the thymus and spleen of adult animals and in human leukemic cell lines. The binding specificity of the Gads SH2 domain is similar to Grb2 and mediates the interaction of Gads with Shc, Bcr-Abl and c-kit. Gads does not interact with Sos, Cbl or Sam68, although the isolated carboxy terminal Gads SH3 domain is able to bind these molecules in vitro. Our results suggest that the unique structure of Gads regulates its interaction with downstream SH3 domain-binding proteins and that Gads may function to couple tyrosine-phosphorylated proteins such as Shc, Bcr-Abl and activated receptor tyrosine kinases to downstream effectors distinct from Sos and Ras.  相似文献   

8.
BCR-ABL is a chimeric oncoprotein that exhibits deregulated tyrosine kinase activity and is implicated in the pathogenesis of Philadelphia chromosome-positive human leukemias. We have previously shown that BCR-ABL activates Ras signaling pathways required for transformation. To elucidate the mechanisms whereby BCR-ABL induced transformation in hematopoietic cells, we examined the biological effects of expression of a series of BCR-ABL mutants. We found that the Grb2 binding site-deleted BCR-ABL and the SH2 domain-deleted BCR-ABL, as well as the tetramerization domain-deleted BCR-ABL do not diminish the transforming properties of BCR-ABL in hematopoietic cells, although these mutations were previously shown to drastically reduce the transforming activity of BCR-ABL in fibroblasts. The tetramerization domain-deleted BCR-ABL did not induce tyrosine phosphorylation of CrkL, SHP-2, Vav and the interactions of BCR-ABL and Shc. However, Ras is activated, Shc is tyrosine phosphorylated and binds to Grb2 in the tetramerization domain-deleted BCR-ABL expressing hematopoietic cells. These results suggest that the tetramerization domain-independent Ras activation is mediated by Shc proteins and induces the transformation of hematopoietic cells.  相似文献   

9.
Integrin-mediated cell adhesion causes activation of MAP kinases and increased tyrosine phosphorylation of focal adhesion kinase (FAK). Autophosphorylation of FAK leads to the binding of SH2-domain proteins including Src-family kinases and the Grb2-Sos complex. Since Grb2-Sos is a key regulator of the Ras signal transduction pathway, one plausible hypothesis has been that integrin-mediated tyrosine phosphorylation of FAK leads to activation of the Ras cascade and ultimately to mitogen activated protein (MAP) kinase activation. Thus, in this scenario FAK would serve as an upstream regulator of MAP kinase activity. However, in this report we present several lines of evidence showing that integrin-mediated MAP kinase activity in fibroblasts is independent of FAK. First, a beta1 integrin subunit deletion mutant affecting the putative FAK binding site supports activation of MAP kinase in adhering fibroblasts but not tyrosine phosphorylation of FAK. Second, fibroblast adhesion to bacterially expressed fragments of fibronectin demonstrates that robust activation of MAP kinase can precede tyrosine phosphorylation of FAK. Finally, we have used FRNK, the noncatalytic COOH-terminal domain of FAK, as a dominant negative inhibitor of FAK autophosphorylation and of tyrosine phosphorylation of focal contacts. Using retroviral infection, we demonstrate that levels of FRNK expression sufficient to completely block FAK tyrosine phosphorylation were without effect on integrin-mediated activation of MAP kinase. These results strongly suggest that integrin-mediated activation of MAP kinase is independent of FAK and indicate the probable existence of at least two distinct integrin signaling pathways in fibroblasts.  相似文献   

10.
The protein tyrosine kinase ZAP-70 plays a central role in T-cell activation. Following receptor engagement, ZAP-70 is recruited to the phosphorylated subunits of the T-cell antigen receptor (TCR). This event results in ZAP-70 activation and in association of ZAP-70 with a number of signaling proteins. Among these is the Shc adaptor, which couples the activated TCR to Ras. Shc interaction with ZAP-70 is mediated by the Shc PTB domain. The inhibitory effect of a Shc mutant containing the isolated PTB domain suggests that Shc interaction with ZAP-70 might be required for TCR signaling. Here, we show that a point mutation (Phe474) of the putative Shc binding site on ZAP-70, spanning tyrosine 474, prevented ZAP-70 interaction with Shc and the subsequent binding of Shc to phospho-zeta. Neither ZAP-70 catalytic activity nor the pattern of protein phosphorylation induced by TCR triggering was affected by this mutation. However expression of the Phe474 ZAP-70 mutant resulted in impaired TCR-dependent gene activation. ZAP-70 could effectively phosphorylate Shc in vitro. Only the CH domain, which contains the two Grb2 binding sites on Shc, was phosphorylated by ZAP-70. Both Grb2 binding sites were excellent substrates for ZAP-70. The data show that Tyr474 on ZAP-70 is required for TCR signaling and suggest that Shc association with ZAP-70 and the resulting phosphorylation of Shc might be an obligatory step in linking the activated TCR to the Ras pathway.  相似文献   

11.
Although arsenite is an established carcinogen, the mechanisms underlying its tumor-promoting properties are poorly understood. Previously, we reported that arsenite treatment leads to the activation of the extracellular signal-regulated kinase (ERK) in rat PC12 cells through a Ras-dependent pathway. To identify potential mediators of the upstream signaling cascade, we examined the tyrosine phosphorylation profile in cells exposed to arsenite. Arsenite treatment rapidly stimulated tyrosine phosphorylation of several proteins in a Ras-independent manner, with a pattern similar to that seen in response to epidermal growth factor (EGF) treatment. Among these phosphorylated proteins were three isoforms of the proto-oncoprotein Shc as well as the EGF receptor (EGFR). Tyrosine phosphorylation of Shc allowed for enhanced interactions between Shc and Grb2 as identified by coimmunoprecipitation experiments. The arsenite-induced tyrosine phosphorylation of Shc, enhancement of Shc and Grb2 interactions, and activation of ERK were all drastically reduced by treatment of cells with either the general growth factor receptor poison suramin or the EGFR-selective inhibitor tyrphostin AG1478. Down-regulation of EGFR expression through pretreatment of cells with EGF also attenuated ERK activation and Shc tyrosine phosphorylation in response to arsenite treatment. These results demonstrate that the EGFR and Shc are critical mediators in the activation of the Ras/ERK signaling cascade by arsenite and suggest that arsenite acts as a tumor promoter largely by usurping this growth factor signaling pathway.  相似文献   

12.
B-cell antigen receptor (BCR) stimulation induces tyrosine phosphorylation of the Shc adaptor protein and its association with Grb2. The Shc/Grb2 complex may be involved in Ras activation, since Grb2 interacts with the guanine nucleotide exchange factor Sos. We reveal here an additional complexity of the BCR-induced Shc/Grb2 complex: it contains tyrosine phosphorylated proteins of 130, 110 and 75 kDa. The 130 kDa molecule inducibly associates with Shc, while the 75 kDa protein interacts with the carboxy-terminal SH3 domain of Grb2. The 110 kDa molecule is defined as Cbl, the product of the c-cbl oncogene, which is strongly phosphorylated on tyrosine upon BCR stimulation. Cbl constitutively interacts with the SH3 domains of Grb2, with a preference for the amino-terminal domain, and is in this way recruited to Shc upon BCR stimulation. Immunodepletion studies showed that Grb2-associated Cbl can be phosphorylated by BCR-induced tyrosine kinases independent of a Shc/Grb2 interaction. This indicates that the BCR can also couple to a Grb2 complex without the involvement of Shc. Cbl not only interacts with Grb2, but also with the adaptor protein Crk. In contrast to its constitutive interaction with Grb2, tyrosine-phosphorylated Cbl only associates with Crk after BCR stimulation. In summary, we observe that the BCR activates Shc/Grb2-, Grb2- and Crk adaptor complexes of distinct composition, which may allow selective coupling to different signal transduction cascades. Cbl participates in all three adaptor complexes and is tyrosine phosphorylated upon BCR stimulation, pointing to a central role for this molecule in the regulation of antigen receptor-induced B cell responses.  相似文献   

13.
Mitogenic G protein-coupled receptors, such as those for lysophosphatidic acid (LPA) and thrombin, activate the Ras/MAP kinase pathway via pertussis toxin (PTX)-sensitive Gi, tyrosine kinase activity and recruitment of Grb2, which targets guanine nucleotide exchange activity to Ras. Little is known about the tyrosine phosphorylations involved, although Src activation and Shc phosphorylation are thought to be critical. We find that agonist-induced Src activation in Rat-1 cells is not mediated by Gi and shows no correlation with Ras/MAP kinase activation. Furthermore, LPA-induced tyrosine phosphorylation of Shc is PTX-insensitive and Ca2+-dependent in COS cells, but undetectable in Rat-1 cells. Expression of dominant-negative Src or Shc does not affect MAP kinase activation by LPA. Thus, Gi-mediated Ras/MAP kinase activation in fibroblasts and COS cells involves neither Src nor Shc. Instead, we detect a 100 kDa tyrosine-phosphorylated protein (p100) that binds to the C-terminal SH3 domain of Grb2 in a strictly Gi- and agonist-dependent manner. Tyrosine kinase inhibitors and wortmannin, a phosphatidylinositol (PI) 3-kinase inhibitor, prevent p100-Grb2 complex formation and MAP kinase activation by LPA. Our results suggest that the p100-Grb2 complex, together with an upstream non-Src tyrosine kinase and PI 3-kinase, couples Gi to Ras/MAP kinase activation, while Src and Shc act in a different pathway.  相似文献   

14.
To elucidate the molecular basis for inhibition of B cell proliferation and differentiation by the Fc receptor for IgG (Fc(gamma)RII), we compared the signaling events in B cells stimulated by cross-linking surface Ig alone (positive signaling), or by co-cross-linking surface Ig and Fc(gamma)RII (negative signaling). Both modes of stimulation induced tyrosine kinase activation. Positive signaling induced activation of Ras, Raf-1 kinase, and mitogen-activated protein kinase; these events were significantly attenuated during negative signaling. Since Ras is activated by SOS and Vav, two known guanine nucleotide exchange factors, activation events associated with these molecules using the two different stimuli were examined. Results of these experiments indicated that tyrosine phosphorylation of Vav did not change upon co-cross-linking. In contrast, the association of Shc and Grb2 was abrogated under negative and induced under positive signaling conditions. Concomitantly, Shc was observed to associate with a tyrosine-phosphorylated 145-kDa protein, previously identified as Src homology 2-containing inositol phosphatase, only under conditions of negative signaling. Based on these results, we hypothesize that negative signaling via the Fc(gamma)RII in B cells is at least partly the result of a block in Ras activation, and that SOS, but not Vav, is the major guanine nucleotide exchange factor in B cells for Ras activation.  相似文献   

15.
The Shc adaptor protein, hereafter referred to as ShcA, possesses two distinct phosphotyrosine-recognition modules, a C-terminal Src homology 2 (SH2) domain and an N-terminal phosphotyrosine-binding (PTB) domain, and is itself phosphorylated on tyrosine in response to many extracellular signals. Phosphorylation of human ShcA at Tyr-317 within its central (CH1) region induces binding to the Grb2 SH2 domain and is thereby implicated in activation of the Ras pathway. Two shc-related genes (shcB and shcC) have been identified in the mouse. shcB is closely related to human SCK, while shcC has not yet been found in other organisms. The ShcC protein is predicted to have a C-terminal SH2 domain, a CH1 region with a putative Grb2-binding site, and an N-terminal PTB domain. The ShcC and ShcB SH2 domains bind phosphotyrosine-containing peptides and receptors with a specificity related to, but distinct from, that of the ShcA SH2 domain. The ShcC PTB domain specifically associates in vitro with the autophosphorylated receptors for nerve growth factor and epidermal growth factor. These results indicate that ShcC has functional SH2 and PTB; domains. In contrast to shcA, which is widely expressed, shcC RNA and proteins are predominantly expressed in the adult brain. These results suggest that ShcC may mediate signaling from tyrosine kinases in the nervous system, such as receptors for neurotrophins.  相似文献   

16.
Engagement of the B-cell antigen receptor (BCR) or the nerve growth factor receptor (NGFR/TrkA) induces activation of multiple tyrosine kinases, resulting in phosphorylation of numerous intracellular substrates. We show that addition of NGF or anti-IgM antibody leads to the early tyrosine phosphorylation of p95(vav), which is expressed exclusively in hematopoietic cells; NGF, similar to crosslinking the BCR, also results in the rapid activation of Ras. The phosphorylation of Vav and activation of Ras triggered by NGF is mediated through Trk tyrosine kinase, whereas signaling through the BCR uses a different tyrosine kinase. We also show that NGF induces tyrosine phosphorylation of Shc and its association with Grb2. Vav and Ras with the adaptor proteins Shc and Grb2 appear to serve as a link between different receptor-mediated signaling pathways and, in human B cells, may play an important regulatory role in neuroimmune interactions.  相似文献   

17.
Ret/ptc2 is a constitutively active, oncogenic form of the c-Ret receptor tyrosine kinase. Like the other papillary thyroid carcinoma forms of Ret, Ret/ptc2 is activated through fusion of the Ret tyrosine kinase domain to the dimerization domain of another protein. Investigation of requirements for Ret/ptc2 mitogenic activity, using coexpression with dominant negative forms of Ras and Raf, indicated that these proteins are required for mitogenic signaling by Ret/ptc2. Because activation of Ras requires recruitment of Grb2 and SOS to the plasma membrane, the subcellular distribution of Ret/ptc2 was investigated, and it was found to localize to the cell periphery. This localization was mediated by association with Enigma via the Ret/ptc2 sequence containing tyrosine 586. Because Shc interacts with MEN2 forms of Ret, and because phosphorylation of Shc results in Grb2 recruitment and subsequent signaling through Ras and Raf, the potential interaction between Ret/ptc2 and Shc was investigated. The PTB domain of Shc also interacted with Ret/ptc2 at tyrosine 586, and this association resulted in tyrosine phosphorylation of Shc. Coexpression of chimeric proteins demonstrated that mitogenic signaling from Ret/ptc2 required both recruitment of Shc and subcellular localization by Enigma. Because Shc and Enigma interact with the same site on a Ret/ptc2 monomer, dimerization of Ret/ptc2 allows assembly of molecular complexes that are properly localized via Enigma and transmit mitogenic signals via Shc.  相似文献   

18.
Fibroblast growth factor receptor (FGFR) activation leads to receptor autophosphorylation and increased tyrosine phosphorylation of several intra cellular proteins. We have previously shown that autophosphorylated tyrosine 766 in FGFR1 serves as a binding site for one of the SH2 domains of phospholipase Cy and couples FGFR1 to phosphatidylinositol hydrolysis in several cell types. In this report, we describe the identification of six additional autophosphorylation sites (Y-463, Y-583, Y-585, Y-653, Y-654 and Y-730) on FGFR1. We demonstrate that autophosphorylation on tyrosines 653 and 654 is important for activation of tyrosine kinase activity of FGFR1 and is therefore essential for FGFR1-mediated biological responses. In contrast, autophosphorylation of the remaining four tyrosines is dispensable for FGFR1-mediated mitogen-activated protein kinase activation and mitogenic signaling in L-6 cells as well as neuronal differentiation of PC12 cells. Interestingly, both the wild-type and a mutant FGFR1 (FGFR1-4F) are able to phosphorylate Shc and an unidentified Grb2-associated phosphoprotein of 90 kDa (pp90). Binding of the Grb2/Sos complex to phosphorylated Shc and pp90 may therefore be the key link between FGFR1 and the Ras signaling pathway, mito-genesis, and neuronal differentiation.  相似文献   

19.
In cardiac fibroblasts, angiotensin II (Ang II) induced a rapid increase in extracellular signal regulated kinase (ERK) activity in a pertussis toxin insensitive manner. This ERK activation was abolished by the Gq-associated phospholipase C inhibitor U73122 but was insensitive to protein kinase C (PKC) inhibitors or PKC downregulation by phorbol ester. Intracellular Ca2+ chelation by BAPTA-AM or TMB-8 abolished Ang II induced ERK activation, whereas treatment with EGTA or nifedipine did not affect it. Ca2+ ionophore A23187 also induced a rapid increase in ERK activity to an extent similar to that of Ang II stimulation. Calmodulin inhibitors (W7 and calmidazolium) and tyrosine kinase inhibitors (genistein and ST638) completely blocked ERK activation by Ang II and A23187. Both Ang II and A23187 caused a rapid increase in the binding of GTP to p21(Ras), which was nearly abolished by genistein and calmidazolium. Transfection with the dominant negative mutant of Ras and the Ras inhibitor manumycin completely inhibited Ang II induced ERK activation. It was also found for the first time that cardiac fibroblasts abundantly expressed Ca2+-sensitive tyrosine kinase Pyk2/CAKbeta/RAFTK and that Ang II markedly induced its activation in a Ca2+/calmodulin-sensitive manner. Overexpression of the dominant negative mutant of Pyk2 significantly attenuated Ang II or A23187-induced ERK activities (36% and 38% inhibition compared with that in mock-transfected cells, respectively) and ERK tyrosine phosphorylation levels, as well as an increase in the binding of GTP to p21(Ras). These findings demonstrate that in cardiac fibroblasts, Ang II induced Ras/ERK activation is dominantly regulated by Gq-coupled Ca2+/calmodulin signaling and that Pyk2 plays an important role in the signal transmission for efficient activation of the Ang II induced Ras/ERK pathway.  相似文献   

20.
Like many other cytokines and growth factors, interleukin-6 (IL-6) activates p21ras. However, the precise biochemical mechanisms inducing this activation are unknown. Therefore, we investigated the effects of IL-6 on some recently identified signaling intermediates, Shc (Src homology and collagen) and Grb2 (growth factor receptor bound protein 2), known to activate p21ras. In the multiple myeloma cell line LP-1, IL-6 stimulated the tyrosine phosphorylation of Shc in a time- and concentration-dependent manner. This led to the complex formulation of Shc with Grb2, an adaptor protein known to relocate a p21ras-GDP exchange factor. Sos1 (Son-of-sevenless), to the cell membrane. Taken together, these findings suggest that IL-6 might activate the Ras signaling pathway via tyrosine phosphorylation of Shc and subsequent recruitment of Grb2. Further studies will elucidate which of the IL-6 receptor associated non-receptor tyrosine kinases of the Src kinase or Janus kinase family, mediate these effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号