首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of β titanium alloys in the aerospace industry   总被引:2,自引:0,他引:2  
Beta titanium alloys have been available since the 1950s (Ti-13V-11Cr-3Mo or B120VCA), but significant applications of these alloys, beyond the SR-71 Blackbird, have been slow in coming. The next significant usage of a β alloy did not occur until the mid-1980s on the B-1B bomber. This aircraft used Ti-15V-3Cr-3Al-3Sn sheet due to its capability for strip rolling, improved formability, and higher strength than Ti-6Al-4V. The next major usage was on a commercial aircraft, the Boeing 777, which made extensive use of Ti-10V-2Fe-3Al high-strength forgings. Ti-15V-3Cr-3Al-3Sn environmental control system ducting, castings, and springs were also used, along with Ti-3Al-8V-6Cr-4Mo-4Zr (β-C) springs. Beta-21S was also introduced for high-temperature usage. More recent work at Boeing has focused on the development of Ti-5Al-5Mo-5V-3Cr, a high-strength alloy that can be used at higher strength than Ti-10V-2Fe-3Al and is much more robust; it has a much wider, or friendlier, processing window. This, along with additional studies at Boeing, and from within the aerospace industry in general will be discussed in detail, summarizing applications and the rationale for the selection of this alloy system for aerospace applications. This paper was presented at the Beta Titanium Alloys of the 00’s Symposium sponsored by the Titanium Committee of TMS, held during the 2005 TMS Annual Meeting & Exhibition, February 13–16, 2005 in San Francisco, CA.  相似文献   

2.
采用水冷铜坩埚感应熔炼技术制备了高质量的Ti-43Al-9V-0.3Y合金铸锭,该合金铸态组织为近层片组织结构,层片团簇的体积分数为85%左右,大小约为80μm,块状卢和γ相位于层片团簇边界。层片结构中除了γ和α2相外,还存在少量的口相析出物。Ti-43Al-9V-0.3Y合金具有良好的热加工性能,通过包套锻造和包套轧制技术,成功制备了大尺寸TiAl合金锻饼和国内最大尺寸TiAl合金板材,其尺寸分别为犯60mm×24mm和500mm×300mm。经热变形后,Ti-43Al-9V-0.3Y合金的显微组织明显细化,力学性能得到了显著提高。  相似文献   

3.
选取5种油气开发常用钛合金材料(Ti-6Al-4V、Ti-6Al-4V-0.1Ru、Ti-6Al-2Sn-4Zr-6Mo、Ti-3Al-8V-6Cr-4Zr-4Mo和Ti-5.5Al-4.5V-2Zr-1Mo)为研究对象,使用高温高压釜模拟国内典型严酷服役工况环境,研究了不同钛合金材料耐均匀腐蚀、局部腐蚀、点蚀、应力腐蚀开裂(SCC)及缝隙腐蚀的性能,通过使用扫描电镜和能谱分析等手段对腐蚀形貌和腐蚀产物进行了分析,并使用电化学方法对不同合金的耐腐蚀机理进行了研究。结果显示,在所测试工况条件下,所有钛合金材料腐蚀反应均为阳极控制过程,均匀腐蚀速率均低于0.001mm/a,并且对应力腐蚀开裂均有良好的抗力。Ti-6Al-4V和Ti-5.5Al-4.5V-2Zr-1Mo合金出现明显的点蚀和缝隙腐蚀问题。对腐蚀机理研究表明,在工况条件温度下,随着pH值的降低,所有钛合金均发生自腐蚀电位降低,极化电阻减小,腐蚀电流增大,耐腐蚀性能下降,其中Ti-6Al-4V耐腐蚀性能下降的最为明显,研究结果为油气开发工况下钛合金石油管的选材和缝隙腐蚀问题防治提供理论基础。  相似文献   

4.
A new method for producing low-cost titanium powder, the Armstrong Process, has proven to be a scalable process. The process, which reduces TiCl4 vapor in a molten stream of sodium to produce pure titanium and NaCl, can also be used to in-situ manufacture Ti-6Al-4V alloy powder. Armstrong Process titanium and Ti-6Al-4V powders were used to produce plate by vacuum hot pressing. Also, thin gage sheet was produced by cold rolling solid-phase sintered titanium and Ti-6Al-4V powder compacts. Chemical analysis and mechanical testing revealed that processed Armstrong titanium and Ti-6Al-4V sheet and plate had compositions and properties similar to those of grade 2 titanium and grade 5 Ti-6Al-4V. For more information, contact John D.K. Rivard, Strategic Analysis, 3811 N. Fairfax Drive Suite 700, Arlington VA 22202; e-mail jrivard@sainc.com.  相似文献   

5.
采用真空感应凝壳熔炼工艺在石墨模中制备Ti-6Al-4V和Ti6Al4V0.5Si两种钛合金。将硅作为一种晶粒细化剂加入到Ti-6Al-4V合金中,考察添加硅对铸态和模锻态Ti-6Al-4V合金组织和性能的影响。铸态合金先在900°C下进行热模锻处理,然后分别进行两种不同的热处理。一种是将模锻样品在1050°C下保温30min,然后水淬以获得细小的层片状组织;另一种是将模锻件在1050°C下保温30min,然后再在800°C下保温30min,以获得粗大的层片状组织。Ti6-Al-4V合金中添加0.5%Si后,铸态合金的晶粒尺寸从627μm减小到337μm,其极限抗拉强度增加约25MPa。具有细小、层片状组织的Ti-6Al-4V0.5Si合金的最大极限抗拉强度为1380MPa,在Hank溶液和NaCl溶液中的腐蚀速度分别为1.35×106和5.78×104mm/a。Ti-6Al-4V合金中添加0.5%Si后,在低滑动速度下的磨损率降低50%,在高滑动速度下的磨损率降低约73%。  相似文献   

6.
A new method to modify the solidification microstructure of titanium alloys, named melt hydrogenation, by adding TiH2 as additive into the melt of titanium alloys during induction skull melting process (ISM), is put forward and the refining effect of this method on the solidification microstructure of Ti-6Al-4V alloy was studied experimentally. After melt hydrogenation, the grain sizes of as-cast Ti-6Al-4V alloy decreased to 612 μm from 1,072 μm, lath-shaped α phase was also refined and fine α/β lamellar microstructure was formed when 1.0 wt.% TiH2 was added. δ-hydride was found in the X-ray diffraction (XRD) spectra of Ti-6Al-4V alloy that prepared with 1.0 wt.% TiH2 added and the δ-hydride distributes in α phase as acicular precipitations.  相似文献   

7.
通过使用Gleeble-3500热模拟试验机进行等温单轴压缩试验,研究了Ti-6Al-4V-0.1Ru钛合金在温度800到1100℃,应变速率0.01到10 s-1条件下的高温流变行为。结果表明,Ti-6Al-4V-0.1Ru钛合金的峰值应力随着变形温度的降低以及变形速率的增大而增大,软化机制在950℃以下为动态回复,在950℃以上为动态再结晶。通过使用线性回归的方法建立了Ti-6Al-4V-0.1Ru钛合金的Arrhenius本构模型,计算得到该合金的热激活能为720.477 kJ/mol,应变速率敏感指数为4.809。通过引入应变对材料常数α、n、A和Q的影响,建立了考虑应变的流变应力预测模型,通过对试验值和预测值的比对,相关系数达到96.9%,说明该模型具有较好的预测精度。  相似文献   

8.
采用光学显微镜、透射电镜和拉伸试验等手段,研究了多道次两向轧制和单向轧制对不同原始状态(热轧态、水淬态和空冷态)Ti-6Al-4V合金显微组织和力学性能的影响。结果表明,热轧态Ti-6Al-4V合金的组织为片状α相+β相+少量等轴α相,水淬态Ti-6Al-4V合金形成了针状马氏体组织,空冷态Ti-6Al-4V合金形成了网状组织。Ti-6Al-4V合金适宜的两向轧制温度为700 ℃,此时合金中可见颗粒状β相弥散分布在α基体上。两向轧制Ti-6Al-4V合金的抗拉强度和屈服强度从高至低顺序为:水淬态>热轧态>空冷态,且轧向强度要高于横向;相较于单向轧制,两向轧制明显降低了Ti-6Al-4V合金板材拉伸性能的各向异性,且水淬态Ti-6Al-4V合金的轧向和横向强度差异最小,700 ℃轧制Ti-6Al-4V合金的主要细化机制为位错细化。  相似文献   

9.
Al-8.4Si-20Cu-10Ge and mixed rare-earth elements (Re) containing Al-8.4Si-20Cu-10Ge-0.1Re filler metals were used for brazing of 6061 aluminum alloy/Ti-6Al-4V. The addition of 20 wt.% copper and 10 wt.% germanium into the Al-12Si filler metal lowered the solidus temperature from 586 °C to 489 °C and the liquidus temperature from 592 °C to 513 °C. The addition of 0.1 wt.% rare-earth elements into Al-8.4Si-20Cu-10Ge alloy caused remarkable Al-rich phase refinement and transformed the needle-like Al2Cu intermetallic compounds into block-like shapes. Shear strengths of the 6061 aluminum alloy/Ti-6Al-4V joints with the two brazing filler metals, Al-8.4Si-20Cu-10Ge and Al-8.4Si-20Cu-10Ge-0.1Re, varied insignificantly with brazing periods of 10-60 min. The average shear strength of the 6061 aluminum alloy/Ti-6Al-4V joints brazed with Al-8.4Si-20Cu-10Ge at 530 °C was about 20 MPa. Rare-earth elements appeared to improve the reaction of the Al-8.4Si-20Cu-10Ge filler metal with Ti-6Al-4V. The joint shear strength of the 6061 aluminum alloy/Ti-6Al-4V with Al-8.4Si-20Cu-10Ge-0.1Re reached about 51 MPa.  相似文献   

10.
采用活性熔剂保护熔炼、水冷铜模激冷铸造制备Al-5.8Mg-0.4Mn和Al-5.8Mg-0.4Mn-0.25Sc-0.1Zr(质量分数,%)两种合金铸锭。合金铸锭经热轧中间退火冷轧成2 mm薄板;研究稳定化退火及微量Sc和Zr对Al-Mg-Mn合金组织与性能的影响。结果表明:在Al-Mg-Mn合金中加入微量Sc和Zr后形成大量弥散的Al3(Sc,Zr)粒子,这些粒子对位错和亚晶界具有强烈的钉扎作用,能明显提高合金的抗再结晶能力和室温力学性能;Al-Mg-Mn-Sc-Zr合金板材经300℃退火1 h后可获得最佳综合力学性能,其σb、σ0.2与δ分别为436 MPa、327 MPa和16.7%。  相似文献   

11.
分别以海绵钛和电解钛为原材料熔炼TC4钛合金,将熔炼后的铸锭进行热轧,研究两种原材料熔炼的铸锭轧制为TC4轧板后的组织与性能。结果表明,海绵钛TC4热轧板材组织较电解钛晶粒粗大,组织不均匀,而电解钛TC4热轧板材组织为均匀细长、条状交错的α相,呈现出类似网篮组织结构。海绵钛TC4板材的抗拉强度和洛氏硬度明显高于电解钛TC4钛合金板材,而电解钛TC4板材的塑性更好。海绵钛TC4板材的断裂方式为准解理断裂与韧性断裂的复合断裂,而电解钛TC4板材的断裂方式为韧性断裂。  相似文献   

12.
Al-5Ti-1B master alloy was added into Mg-14Li-1Al(LA141)alloy and then LA141 sheets were prepared by extrusion and cold rolling.The effect of the addition level of Al-5Ti-1B master alloy on the grain size of LA141 alloy was investigated as well as the effects of the total reduction of cold rolling and the annealing temperature on microstructure,mechanical properties and plastic formability of the LA141 sheets.The results show that the optimal addition level of Al-5Ti-1B master alloy into LA141 alloy is 1.25%(mass fraction)and LA141 alloy has the finest grains.With the increase of the total reduction of cold rolling,the grains of the as-rolled LA141 sheets were flattened gradually.A proper anneal temperature of 200℃ is obtained for the cold rolled LA141 sheets. Under this condition,microstructure of the LA141 sheets consists of fine and uniform equiaxed grains and has higher Erichsen cupping index(IE).  相似文献   

13.
以海绵钛和电解钛分别作为熔炼TC4钛合金的原材料,将熔炼后的铸锭进行热轧并退火处理,研究不同原料铸锭轧制的TC4合金板材退火处理后的组织与力学性能。结果表明:去应力退火对电解钛与海绵钛TC4合金板材组织的影响不大。再结晶退火后,电解钛与海绵钛TC4合金板材均有再结晶的等轴α相,而电解钛TC4合金的等轴化程度更高,内部组织更均匀。海绵钛TC4合金板材在经550 ℃退火处理后的应力去除效果比电解钛TC4合金的好,其强度略微降低,而塑性提升更为明显。电解钛TC4合金板材在经过800 ℃退火处理后的再结晶效果比海绵钛TC4合金好,其强度略微降低,而塑性得到极大的提升。两种钛合金板材退火后板材的断裂方式皆为韧性断裂。海绵钛TC4合金板材经退火后硬度降低,而电解钛TC4合金板材经退火后硬度增加。  相似文献   

14.
Isothermal compression of Ti-6Al-4V alloy without and with hydrogenation content of 0.27 wt.% was carried out on Gleeble-1500D thermal simulation machine at deformation temperature between 760 and 1000 °C and strain rate from 0.001 to 1 s−1. The experimental results show that hydrogenation can decrease the deformation temperature or increase the strain rate of Ti-6Al-4V alloy. The apparent activation energy was determined to be 667 kJ mol−1 for isothermal compression of the Ti-6Al-4V alloy without hydrogenation content of 0.27 wt.% in the α + β phase region (760-960 °C), and this value was about 655 and 199 kJ mol−1 for the alloy with 0.27 wt.% of hydrogenation content in the α + β phase region (760-840 °C) and β phase region (840-960 °C), respectively. Constitutive equation was developed for the high-temperature deformation of Ti-6Al-4V alloy both without and with hydrogenation content of 0.27 wt.%.  相似文献   

15.
Microstructural evolution and mechanical properties of twin roll cast (TRC) Mg-3.3 wt.%Al-0.8 wt.%Mn-0.2 wt.%Ca (AM31 + 0.2Ca) alloy strip during warm rolling and subsequent annealing were investigated in this paper. The as-TRC alloy strip shows columnar dendrites in surface and equiaxed dendrites in center regions, as well as finely dispersed primary Al8Mn5 particles on interdendritic boundaries which result in the beneficial effect on microstructural refinement of strip casting. The warm rolled sheets show intensively deformed band or shear band structures, as well as finely and homogeneously dispersed Al-Mn particles. No evident dynamic recrystallization (DRX) takes place during warm rolling process, which is more likely attributed to the finely dispersed particle and high solid solution of Al and Mn atoms in α-Mg matrix. After annealing at 350 °C for 1 h, the warm rolled TRC sheets show fine equiaxed grains around 7.8 μm in average size. It has been shown that the present TRC alloy sheet has superior tensile strength and comparative elongation compared to commercial ingot cast (IC) one, suggesting the possibility of the development of wrought magnesium alloy sheets by twin roll strip casting processing. The microstructural evolution during warm rolling and subsequent annealing as well as the resulting tensile properties were analyzed and discussed.  相似文献   

16.
分析了不同固溶时效温度对Ti-6Al-4V-0.5Si合金抗拉强度、伸长率及显微组织的影响。结果表明,固溶处理后Ti-6Al-4V-0.5Si合金中存在较多的六方α′和斜方α″两种马氏体相和亚稳定相。时效处理后,马氏体相和亚稳定相分解再结晶得到分散的α+β相。综合分析表明,固溶时效工艺为950℃×30min(水冷,WQ)+480℃×4h(空冷,AQ),合金的综合性能最好,此时合金的抗拉强度和伸长率分别为745.6MPa和8.3%,比铸态合金分别提高了24.8%和36.0%。  相似文献   

17.
In additive manufacturing, microstructural control is feasible via processing parameter alteration. However, the window for parameter variation for certain materials, such as Ti-6Al-4V, is limited, and alternative methods must be employed to customize microstructures. Grain refinement and homogenization in cast titanium alloys has been demonstrated through the addition of hypoeutectic concentrations of boron. This work explores the influence of 0.00 wt.%, 0.25 wt.%, 0.50 wt.%, and 1.0 wt.% boron additions on the microstructure and bulk mechanical properties of Ti-6Al-4V samples fabricated in an Arcam A2 electron beam melting (EBM) system with commercial processing parameters for Ti-6Al-4V. Analyses of EBM fabricated Ti-6Al-4V + B indicate that the addition of 0.25–1.0 wt.% boron progressively refines the grain structure, and it improves hardness and elastic modulus. Despite a reduction in size, the β grain structure remained columnar as a result of directional heat transfer during EBM fabrication.  相似文献   

18.
Zhu  Zhi-hao  Liu  Yu-han  Chen  Zhi-peng  Liu  Tian-yu  Zhang  Shuang  Dong  Dan-dan  Dong  Chuang 《中国铸造》2023,20(1):23-28

Ti-Al-V-Zr quaternary titanium alloys were designed following α-{[Al-Ti12](AlTi2)}17−n+β-{[Al-Ti12Zr2](V3)}n, where n=1–7 (the number of β units), on the basis of the dual-cluster formula of popular Ti-6Al-4V alloy. Such an alloying strategy aims at strengthening the alloy via Zr and V co-alloying in the β-Ti unit, based on the original β formula [Al-Ti14](V2Ti) of Ti-6Al-4V alloy. The microstructures of the as-cast alloys by copper-mold suction-casting change from pure α (n=1) to α+α′ martensite (n=7). When n is 6, Ti-5.6Al-6.8V-8.1Zr alloy reaches the highest ultimate tensile strength of 1,293 MPa and yield strength of 1,097 MPa, at the expense of a low elongation of 2%, mainly due to the presence of a large amount of acicular α′ martensite. Its specific strength far exceeds that of Ti-6Al-4V alloy by 35%.

  相似文献   

19.
Ti-5Al-5V-5Mo-3Cr metastable beta titanium alloy was prepared by rapid thermomechanical powder consolidation approach from blended elemental powder mixture. Allotropic phase transformation and high-temperature tensile behaviour of the consolidated powder metallurgy Ti-5553 alloy were investigated in this work. The studied alloy has a high β phase transformation temperature of 975 °C±5 °C, which is higher than other conventional ingot metallurgy Ti-5553 alloys. The β grains in the microstructure of the alloy are coarsened significantly with increasing the heating temperature from 890 °C to 1050 °C, however, the grain coarsening tendency is mitigated when the heat treatment temperature reach to the range of 1080 °C–1100 °C. The high-temperature tensile mechanical properties of the alloy are sensitive to both the deformation temperature and strain rate, and superplastic deformation of the alloy was achieved at the condition of 850 °C/0.001 s−1 with the tensile elongation of 103.5%. The microstructural evolution characteristics and the fracture mechanisms of the alloy are varied with changing the deformation variables, which are revealed by the microstructure observation of the fractured specimens from different sampling positions.  相似文献   

20.
Our previous results have shown that comprehensive mechanical properties of titanium alloys can be effectively improved by addition of Fe[1]. We systematically investigate hot deformation behaviors of Ti-6Al-4V-0.35Fe in this study, which is significant to improve plastic deformation ability of titanium alloys. In experiment, we use a Gleeble 3800 thermo-mechanical simulator to obtain the relationship between thermomechanical parameters and flow stress in a range of temperatures (800-950 °C) and strain rates (0.001-10 s-1). The single-peak profiles of the flow curves indicate that dynamic recrystallization (DRX) mechanism dominates the deformation. TEM analysis indicate that the grain size in DRX changes under different deformation temperatures, and finer grains are formed at relatively lower temperature due to the dynamic globularization. The dislocation walls are formed in subgrain boundaries due to dislocation slipping-climbing. The Avrami-type DRX model and the strain compensated multivariable regression model have been applied to fit the experimental stress-strain data during hot deformation. A comparative study between these two types of constitutive models is conducted to represent the flow behavior. It is found that both models have good accuracy in predicting the flow stress of Ti-6Al-4V-0.35Fe alloy. A processing map based on dynamic material model (DMM) at the strain of 0.8 (steady-state flow stage) has been established to identify the flow instability regions and stability regions. The strain rate range of stability region is 0.001-0.6s-1 which has been expanded compared to the range of 0.0003-0.1s-1 of Ti-6Al-4V. Optimal hot working parameters are confirmed to be 920-950 °C and 0.001-0.005 s-1, and nearly complete DRX has taken place. Our results indicate that hot working property of Fe-microalloyed Ti-6Al-4V is better than that of Ti-6Al-4V alloy in 800-950 °C temperature scale, and processing cost has been decreased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号