首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
张腾飞  陈龙  李云 《控制与决策》2013,28(10):1479-1484

粗糙??-means 聚类算法是一种有效的处理聚类边界模糊问题的算法, 但大多数算法对簇的下近似集和边界 中的对象使用统一的权值, 忽略了簇内对象之间的差异性. 针对这一问题提出一种新的改进算法, 通过对簇内的每个 对象加入簇内不平衡度量, 以区分不同对象对簇的贡献程度, 使得聚类结果簇内更紧凑、簇间更疏远. 不同数据集的 仿真实验结果表明, 所提出算法可以有效提高聚类结果的精度.

  相似文献   

2.
通过引入上、下近似的思想,粗糙K-means已成为一种处理聚类边界模糊问题的有效算法,粗糙模糊K-means、模糊粗糙K-means等作为粗糙K-means的衍生算法,进一步对聚类边界对象的不确定性进行了细化描述,改善了聚类的效果。然而,这些算法在中心均值迭代计算时没有充分考虑各簇的数据对象与均值中心的距离、邻近范围的数据分布疏密程度等因素对聚类精度的影响。针对这一问题提出了一种局部密度自适应度量的方法来描述簇内数据对象的空间特征,给出了一种基于局部密度自适应度量的粗糙K-means聚类算法,并通过实例计算分析验证了算法的有效性。  相似文献   

3.
针对粗糙K-means聚类及其相关衍生算法需要提前人为给定聚类数目、随机选取初始类簇中心导致类簇交叉区域的数据划分准确率偏低等问题,文中提出基于混合度量与类簇自适应调整的粗糙模糊K-means聚类算法.在计算边界区域的数据对象归属于不同类簇的隶属程度时,综合考虑局部密度和距离的混合度量,并采用自适应调整类簇数目的策略,获得最佳聚类数目.选取数据对象稠密区域中距离最小的两个样本的中点作为初始类簇中心,将附近局部密度高于平均密度的对象划分至该簇后再选取剩余的初始类簇中心,使初始类簇中心的选取更合理.在人工数据集和UCI标准数据集上的实验表明,文中算法在处理类簇交叠严重的球簇状数据集时,具有自适应性,聚类精度较优.  相似文献   

4.
现有粗糙K-means聚类算法及系列改进、衍生算法均是从不同角度描述交叉类簇边界区域中的不确定性数据对象,却忽视类簇间规模的不均衡对聚类迭代过程及结果的影响.文中引入区间2-型模糊集的概念度量类簇的边界区域数据对象,提出基于区间2-型模糊度量的粗糙K-means聚类算法.首先根据类簇的数据分布生成边界区域样本对交叉类簇的隶属度区间,体现数据样本的空间分布信息.然后进一步考虑类簇的数据样本规模,在隶属度区间的基础上自适应地调整边界区域的样本对交叉类簇的影响系数.文中算法削弱边界区域对较小规模类簇的中心均值迭代的不利影响,提高聚类精度.在人工数据集及UCI标准数据集的测试分析验证算法的有效性.  相似文献   

5.
粗糙K-means算法中下近似和边界区域权重系数的设置对算法的聚类效果有着重要的影响。传统的粗糙K-means算法及很多改进的粗糙K-means算法对所有类簇的下近似和边界区域设置固定的权重,忽视了簇内数据对象分布差异性的影响。针对这个问题,根据下近似和边界区域的数据对象相对于类簇中心的空间分布情况,提出一种新的基于空间距离自适应权重度量的粗糙K-means算法。该算法在每次迭代过程中,根据每个类簇的下近似和边界区域的数据对象相对于类簇中心的平均距离,综合度量下近似和边界区域对于类簇中心迭代计算的不同重要程度,动态地计算下近似和边界区域的相对权重系数。通过实例验证及实验仿真证明了所提算法的有效性。  相似文献   

6.
马福民  孙静勇  张腾飞 《控制与决策》2022,37(11):2968-2976
在原有数据聚类结果的基础上,如何对新增数据进行归属度量分析是提高增量式聚类质量的关键,现有增量式聚类算法更多地是考虑新增数据的位置分布,忽略其邻域数据点的归属信息.在粗糙K-means聚类算法的基础上,针对边界区域新增数据点的不确定性信息处理,提出一种基于邻域归属信息的粗糙K-means增量式聚类算法.该算法综合考虑边界区域新增数据样本的位置分布及其邻域数据点的类簇归属信息,使得新增数据点与各类簇的归属度量更为合理;此外,在增量式聚类过程中,根据新增数据点所导致的类簇结构的变化,对类簇进行相应的合并或分裂操作,使类簇划分可以自适应调整.在人工数据集和UCI标准数据集上的对比实验结果验证了算法的有效性.  相似文献   

7.
一种优化初始中心的K-means粗糙聚类算法   总被引:3,自引:0,他引:3       下载免费PDF全文
针对K-means算法的不足,提出了一种优化初始中心的聚类算法。首先,采用密度敏感的相似性度量来计算对象的密度,基于对象之间的距离和对象的邻域,选择相互距离尽可能远的数据点作为初始聚类中心。然后,采用基于粗糙集的K-means聚类算法处理边界对象,同时利用均衡化函数自动生成聚类数目。实验表明,算法具有较好的聚类效果和综合性能。  相似文献   

8.
K-means算法所使用的聚类准则函数是将数据集中各个簇的误差平方值直接相加而得到的,不能有效处理簇的密度不均且大小差异较大的数据集。为此,将K-means算法的聚类准则函数定义为加权的簇内标准差之和,权重为簇内数据对象数占总数目的比例。同时,调整了传统K-means算法将数据对象重新分配给簇的方法,采用一个数据对象到中心点的加权距离代替传统K-means算法中的距离,将数据对象分配给使加权距离最小的中心点所在的簇。实验结果表明,针对模拟数据集的聚类,改进K-means算法可以明显减少大而稀的簇中数据对象被错误地分配到相邻的小而密簇的可能性,改善了聚类的质量;针对UCI数据集的聚类,改进算法使得各个簇更为紧凑,从而验证了改进K-means算法的有效性。  相似文献   

9.
基于新的距离度量的K-Modes聚类算法   总被引:4,自引:1,他引:4  
传统的K-Modes聚类算法采用简单的0-1匹配差异方法来计算同一分类属性下两个属性值之间的距离, 没有充分考虑其相似性. 对此, 基于粗糙集理论, 提出了一种新的距离度量. 该距离度量在度量同一分类属性下两个属性值之间的差异时, 克服了简单0-1匹配差异法的不足, 既考虑了它们本身的异同, 又考虑了其他相关分类属性对它们的区分性. 并将提出的距离度量应用于传统K-Modes聚类算法中. 通过与基于其他距离度量的K-Modes聚类算法进行实验比较, 结果表明新的距离度量是更加有效的.  相似文献   

10.
传统的K-means算法虽然具有很多优点,但聚类准则函数对簇密度不均的数据集分类效果较差.文中在加权标准差准则函数的基础之上,增加了收敛性判定,并在Hadoop平台上提出了一种基于MapReduce编程思想设计与优化的K-means并行算法.与传统的K-means算法相比,设计的并行算法在聚类结果的准确性、加速比、扩展性、收敛性等方面都有显著的提高,降低了因簇密度不均引起误分的概率,提高了算法的聚类精度,并且数据规模越大、节点越多,优化的效果就越明显.  相似文献   

11.
针对传统K-均值算法对初始聚类中心选择较为敏感的问题,提出了一种基于融合集群度与距离均衡优化选择的K-均值聚类(K-MCD)算法。首先,基于"集群度"思想选取初始簇中心;然后,遵循所有聚类中心距离总和均衡优化的选择策略,获得最终初始簇中心;最后,对文本集进行向量化处理,并根据优化算法重新选取文本簇中心及聚类效果评价标准进行文本聚类分析。对文本数据集从准确性与稳定性两方面进行仿真实验分析,与K-均值算法相比,K-MCD算法在4个文本集上的聚类精确度分别提高了18.6、17.5、24.3与24.6个百分点;在平均进化代数方差方面,K-MCD算法比K-均值算法降低了36.99个百分点。仿真结果表明K-MCD算法能有效提高文本聚类精确度,并具有较好的稳定性。  相似文献   

12.
Michael K.Ng等人提出了新K-Modes聚类算法,它采用基于相对频率的启发式相异度度量方法,有效地提高了聚类精度,但不足的是在计算各类的属性分类值频率时假定类中样本对聚类的贡献相同。为了考虑类中样本对类中心的不同影响,提出一种粗糙K-Modes算法,通过粗糙集的上、下近似度量数据样本在类内的重要性程度,不仅可以获得比新K-Modes算法更好的聚类效果,而且可以在保证聚类效果的基础上降低白亮等人提出的基于粗糙集改进的K-Modes算法的计算复杂度。对几个UCI的数据集的测试实验结果显示出新算法的优良性能。  相似文献   

13.
针对传统K-prototypes在计算分类属性的差异度时未考虑各个分类属性对聚类结果的影响程度,且算法容易受到噪声的干扰,无法处理数据中不够精确、不完整等不确定性问题,提出基于信息熵的粗糙K-prototypes聚类算法。在计算数据样本之间分类属性的差异度时,使用信息熵的理论,确定每个分类属性对于聚类分析结果的影响权重;引入粗糙理论,计算得到各样本与粗糙模之间的粗糙相异度,通过多次迭代计算,获得最终聚类结果。该算法结合信息熵和粗糙理论,可区别对待各分类属性,解决数据不精确引起的不确定性问题,4个UCI数据集上的实验分析结果验证了该算法的有效性。  相似文献   

14.
针对K-means聚类算法容易陷入局部最优、不能处理边界对象及线性不可分的缺点,提出一种基于粒子群的粗糙核聚类算法。该算法通过Mercer核将输入样本空间中的样本映射到高维空间,使样本变得线性可分,并结合粗糙集的思想,通过动态改变上下近似集的权重因子对边界对象进行有效处理,同时采用reliefF方法对样本属性进行加权处理,以解决混合数据的聚类问题,最后利用粒子群算法防止算法陷入局部最优。仿真实验表明,相对于其他改进算法,该算法具有较高的正确率和较短的收敛时间,并进一步验证了该算法的鲁棒性和稳定性,具有一定的实用价值。  相似文献   

15.
李莲  罗可  周博翔 《计算机应用研究》2013,30(10):2916-2919
针对传统K-means聚类算法初始聚类中心随机选取、不能处理边界对象、效率低、聚类精度低等问题, 提出了一种新的K-means聚类算法。算法引入粒计算理论, 并依据密度和最大最小距离法选择初始聚类中心, 避免初始聚类中心在同一个类中, 结合粗糙集, 通过动态调整上近似集和边界集的权重因子, 以解决边界数据的聚类问题; 最后采用类间距和类内距均衡化准则函数作为算法终止判断条件, 来得到更好的聚类效果。实验结果表明:该算法具有较高的准确率, 迭代次数较少, 并降低了对噪声的敏感程度。  相似文献   

16.
孙秀娟  刘希玉 《计算机应用》2008,28(12):3244-3247
在K-means算法中,聚类数k是影响聚类质量的关键因素之一。目前,已经提出了许多确定最佳k值的聚类有效性方法,但这些方法都不能很好地处理两种数据集:类(簇)密度不同的数据集和类间距比较小的数据集(含有合并簇的数据集)。为此,提出了一种新的聚类有效性函数,该函数定义为数据特征轴总长度的平方与最小类间距的比值,最佳聚类数为这个比值达到最小时对应的k值。同时,为减小K-means算法对噪声和孤立点数据的敏感性,使用了基于加权的改进K-平均的方法计算类中心。实验证明,与其他算法相比,基于新聚类有效性函数的K-wmeans算法不仅降低了噪声和孤立点数据对聚类结果的影响,而且能有效地处理上面提到的两种数据集,明显提高了数据聚类质量。  相似文献   

17.
通过粗隶属函数,将粗糙集理论与模糊集理论联系起来,建立一种粗糙集理论与模糊集理论间的关系。把粗隶属函数视为论域上的一个特殊模糊集,用它的!-截集和强"-截集的概念,将经典粗糙集模型进行推广,提出基于等价关系的隶属度粗糙集模型,验证一些有用的性质,并证明该模型比Pawlak粗糙集模型具有更好的精度。最后将基于等价关系的隶属度粗糙集模型拓展到基于一般二元关系的广义隶属度粗糙集模型,并给出其相应的性质。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号