共查询到18条相似文献,搜索用时 68 毫秒
1.
2.
压缩感知及其图像处理应用研究进展与展望 总被引:2,自引:0,他引:2
压缩感知理论(Compressed sensing,CS)通过少量的线性测量值感知信号的原始结构,并通过求解最优化问题精确地重构原信号.该理论减少了数字图像及视频 获取时的存储及传输代价,也为后续的图像处理及识别的研究提供了新的契机,促进了理论和工程应用的结合. 阐述了CS的基本原理,综述了其关键技术稀疏变换、观测矩阵 设计、重构算法的一系列最新理论成果和发展,深入分析和比较了CS理论应用到图像处理领域的研究和发展状况,总结了其中存在的问题,并对未来的应用前景进行了展望. 相似文献
3.
4.
压缩感知技术,特别是语音压缩感知技术逐渐成为信号处理领域的研究热点。当前的语音压缩感知关键技术主要包括适合语音信号的稀疏分解矩阵构造,观测矩阵的选择和重构算法的设计。稀疏分解矩阵的重要代表是正交基、基于语音特性的线性预测矩阵和过完备字典。观测矩阵方面主要采用随机观测矩阵分析语音压缩感知性能;重构算法方面重点研究当观测序列或语音信号本身含有噪声时鲁棒的语音压缩感知重构算法。本文对上述语音压缩感知的3大关键技术进行了介绍和对比分析,并对语音压缩感知的应用进行了总结,最后对未来可能的研究热点进行了展望。 相似文献
5.
6.
结构化压缩感知研究进展 总被引:12,自引:8,他引:12
压缩感知(Compressive sensing,CS)是一种全新的信息采集与处理的理论框架. 借助信号内在的稀疏性或可压缩性,可从小规模的线性、非自适应的测量中通过非线性优化的方法重构信号. 结构化压缩感知是在传统压缩感知基础上形成的新的理论框架,旨在将与数据采集硬件及复杂信号模型相匹配的先验信息引入传统压缩感知,从而实现对更广泛类型的信号准确有效的重建. 本文围绕压缩感知的三个基本问题,从结构化测量方法、结构化稀疏表示和结构化信号重构三个方面对结构化压缩感知的基本模型和关键技术进行详细的阐述,综述了结构化压缩感知的最新的研究成果,指出结构化压缩感知进一步研究的方向. 相似文献
7.
8.
压缩感知理论是一种利用信号的稀疏性或可压缩性而把采样与压缩融为一体的新理论体系,它成功地克服了传统理论中采样数据量大、资源浪费严重等问题。该理论的研究方向主要包括信号的稀疏表示、测量矩阵的设计和信号的重构算法。其中信号的重构算法是该理论中的关键部分,也是近年来研究的热点。本文主要对匹配追踪类重构算法作了详细介绍,并通过仿真实验结果对这些算法进行了对比和分析。 相似文献
9.
动态压缩感知综述 总被引:2,自引:6,他引:2
动态压缩感(Dynamic compressed sensing, DCS)知由视频信号处理问题引出, 是压缩感知(Compressed sensing, CS)理论研究领域中新兴起的一个研究分支, 旨在处理信号支撑集随时间发生变化的时变稀疏信号, 较为成功的应用范例是动态核磁共振成像. 本文首先介绍动态系统模型, 给出时变稀疏信号支撑集缓慢变化的定义、 时变稀疏信号的稀疏表示和感知测量的方法; 其次, 建立一个统一的时变稀疏信号重构模型, 基于该模型对现有算法进行分类, 简要综述时变稀疏信号的重构算法, 并且对比分析算法的性能; 最后, 讨论动态压缩感知的应用, 并对其研究前景进行展望. 相似文献
10.
探索压缩感知理论在语音信号重构中的应用,研究测量矩阵选取对语音信号重构效果的影响.改进传统随机,托普利兹,循环等测量矩阵,尝试将稀疏对角矩阵应用于测量矩阵完成对语音信号的非相干测量.在语音信号上进行实验,分别采用稀疏对角结构测量矩阵和传统测量矩阵,对比它们使用StOMP算法重构语音信号的效果.实验结果表明,采用改进的稀疏对角循环矩阵重构语音信号,较传统矩阵重构的精确度有明显提高,运行时间也有明显缩短. 相似文献
11.
The compressed sensing (CS) theory makes sample rate relate to signal structure and content. CS samples and compresses the signal with far below Nyquist sampling frequency simultaneously. However, CS only considers the intra-signal correlations, without taking the correlations of the multi-signals into account. Distributed compressed sensing (DCS) is an extension of CS that takes advantage of both the inter- and intra-signal correlations, which is wildly used as a powerful method for the multi-signals sensing and compression in many fields. In this paper, the characteristics and related works of DCS are reviewed. The framework of DCS is introduced. As DCS’s main portions, sparse representation, measurement matrix selection, and joint reconstruction are classified and summarized. The applications of DCS are also categorized and discussed. Finally, the conclusion remarks and the further research works are provided. 相似文献
12.
随着信息社会的迅速发展,人们对数字信息的需求越来越大。同时,人们对信号的采样速率、传输速度和存储空间的要求也变得越来越高。如何在保持信号信息的同时尽可能地减少信号的采样数量?Candès在2006年的国际数学家大会上介绍了一种称为压缩感知的新颖信号采样理论,指出:只要远少于传统Nyquist采样定理所要求的采样数即可精确或高概率精确重建原始信号。围绕压缩感知的稀疏字典设计、测量矩阵设计、重建算法设计这3个核心问题,对其基本理论和主要方法进行了系统阐述,同时指出了压缩感知有待解决的若干理论问题与关键技术。 相似文献
13.
信号分解的稀疏程度决定了压缩感知重构信号的精度,针对标准正交基稀疏程度的不足,提出了基于混合字典的压缩感知图像分解和重构方法。构建匹配图像边缘和纹理的二维Gabor字典,将图像在离散余弦字典与建立的二维Gabor字典上进行混合稀疏分解,得到图像的光滑成分、边缘成分和纹理成分。对得到的稀疏成分进行CS观测,通过求解一个优化问题重构图像。实验结果表明,构造的混合字典能够对图像进行更加稀疏的表示,在相同的采样率下,图像的重构质量优于标准正交基分解。 相似文献
14.
针对现有的超分辨率重建算法只考虑图像块的灰度信息,而忽略了纹理信息,并且大多数非局部方法在强调非局部信息的同时,没有考虑局部信息的问题,提出一种结合压缩感知与非局部信息的图像超分辨率重建算法。首先,根据图像块的结构特征计算像素之间的相似性,同时考虑了图像块的灰度信息和纹理信息;然后,合并图像的局部和非局部信息来估计相似像素的权重,构造结合局部和非局部信息的正则项;最后,将图像的非局部信息引入到压缩感知框架中,通过迭代收缩算法求解稀疏表示系数。实验结果表明,所提算法与现有的基于学习的超分辨率算法相比,重建图像的峰值信噪比和结构相似度取值更高,并且在恢复图像纹理细节的同时有效抑制了噪声。 相似文献
15.
16.
李蕴华 《计算机工程与应用》2011,47(25):186-189,193
分块压缩感知用于图像获取可以解决传统压缩感知在重构时运算量大的问题,但是运用分块压缩感知却使重构图像的质量有所降低。提出了一种改进的图像分块压缩感知算法。该算法通过对观测矩阵加权,保证了图像低频部分在重构时获得更大的精度,提高了图像的质量。另外,算法根据各图像块不同纹理复杂性,自适应地改变观测值数目,使得在保证图像质量的前提下,重构所需的总观测值数目更少。实验证明了该算法的有效性。 相似文献
17.
压缩传感在无线视频监控中的应用研究* 总被引:1,自引:0,他引:1
图像采集数据量大是制约视频监控系统向无线化方向发展的主要因素,提出利用压缩传感进行视频图像的采样,为无线视频监控带来一种新的应用研究。为了减少图像稀疏分解过程的计算量和存储量,在匹配追踪算法的基础上,引入量子遗传算法,实现快速的图像稀疏表示。以Fourier矩阵作为压缩传感的测量矩阵,能有效减少测量数据量,并提高重构图像的质量。仿真实验证明,采用压缩传感所得到的测量数据量远小于传统采样方法所获的数据量,突破了传统信号采样的瓶颈,提高了采样效率,最终获取的压缩测量值能够很好地恢复为监控场景。 相似文献
18.
针对传统纹理分类方法计算复杂的问题,本文基于bag-of-words模型提出了一种简单、新奇的纹理分类方法。在特征提取阶段,使用NSCT滤波器对局部图像块进行映射投影,然后通过观测矩阵提取其随机测量值特征;在纹理分类阶段,直接将随机特征嵌入到bag-of-words环境,并且直接在压缩域内进行学习和分类。利用纹理图像的稀疏性,本文提出的特征提取方法简单,并且在性能和复杂度上都优于传统特征提取方法。最后使用CUReT数据库进行数值试验,并与patch、patch-MRF、MR8、LBP四种最经典的方法进行比对,本文方法在分类精度以及实时性上有重要的改进。 相似文献