首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyacrylate latex materials have become a hot area recently in China due to its environmental friendliness. However, the water whitening resistance of the polyacrylate latex products in the market is largely unsatisfactory, which seriously affects the appearance and performance of the latex products. In this work, the effect of glass-transition temperature (Tg) of a polyacrylate latex film on its water whitening resistance was investigated. The light transmittance measurement showed that the higher the Tg of the latex film, the better the water whitening resistance. Atomic force microscope, surface element analysis, static water contact angle measurement, and attenuated total reflection–Fourier transform infrared were used to characterize the accumulation of the emulsifier on the surface of the latex film. It was found that the amount of emulsifier migrated to the surface of the latex film increased with the increase of the Tg of the latex film, that is, the amount of emulsifier remained inside the latex film decreased, thereby reducing its affinity to water. In addition, the higher the Tg of the latex film, the lower the water absorption, also reducing the affinity of the latex film to water. Both work together to improve the water whitening resistance of polyacrylate latex film with higher Tg. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48361.  相似文献   

2.
The core‐shell fluorine‐containing polyacrylate latex was successfully synthesized by two‐stage semicontinuous emulsion copolymerization of methyl methacrylate (MMA), butylacrylate (BA), acrylic acid (AA), and dodecafluoroheptyl methacrylate (DFMA). The fluorine‐containing polyacrylate latex was characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential, thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC). The effects of AA content on monomer conversion, polymerization stability, particle size, corsslinking degree, carboxyl groups distributions (latex surface, aqueous phase or buried in latex), as well as mechanical properties and water absorption rate of latex film were investigated. The obtained fluorine‐containing polyacrylate latex exhibited core‐shell structure with a particle size of 120–150 nm. The introduction of AA was beneficial for the increase of monomer conversion and the polymerization stability, and had little effects on the mechanical property of latex film. However, the hydrophilicity of AA made the water resistance of latex film get bad. With the increase of AA content, the carboxyl groups preferred to distribute on aqueous phase, and the possibility of homogeneous nucleation increased and more oligomers particles were formed. Moreover, the oligomers would distribute to the latex and continued to grow up, making the latex morphology changed from spherical to plum blossom‐like. The core‐shell latex had two Tg corresponding to the rubber polyacrylate core and hard fluorine‐containing polyacrylate shell, and the latex film possessed excellent thermal stability. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42527.  相似文献   

3.
Modified micro-emulsion polymerization was successfully used to synthesize a kind of ambient temperature self-crosslinking core–shell emulsion, consisting of polyacrylate core and vinyltriethoxysilane (VTES) modified polyacrylate shell, by varying the ratio of soft monomer (BA) and hard monomer (MMA) which is different in the core and shell. The emulsion and its film formed at ambient temperature were characterized by attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Core–shell structure was clearly shown in TEM micrographs, and two distinct glass transition temperatures (T g) were confirmed by DSC analysis. Lower T g of core phase analyzed by DSC and self-crosslinking properties of VTES characterized by crosslinking degree cause latex particles form continuous film at ambient temperature. Thermal and mechanical properties and the surface properties of the latex films were also investigated. Results showed that the core–shell latex films containing 5 and 7.5 % VTES exhibited higher thermal stability, better mechanical properties, higher contact angle, and water resistance compared with pure polyacrylate film.  相似文献   

4.
Several carboxylated poly(butyl acrylate) latices prepared by a semibatch emulsion poly-merization process were characterized in this study. A significant amount of polyelectrolyte was found in the latex product containing 10% AA, designated as AA10. On the other hand, latices containing 0.1% AA (AA0.1), 0.1% MAA (MAAC.1), and 10% MAA (MAA10) showed very low levels of polyelectrolyte in water. Based on the critical flocculation concentration data, it can be concluded that incorporation of 10% AA or 10% MAA into the emulsion polymers can greatly improve the chemical stability of the latex products, especially at higher pH. The data of the pH and conductometric titration experiments show that the MAA unit can be distributed more uniformly in the latex particles in comparision with the AA unit. This result is further confirmed by determination of the Tg's of the emulsion polymers by means of thermally stimulated current (TSC). © 1996 John Wiley & Sons, Inc.  相似文献   

5.
This research was based on the study of the effects of H12MDI-1, 4BD PU soft segments on the physical properties and water vapor permeability of films cast from solvent evaporation or wet coagulation method. The soft segments studied included polyether, polyester, and polycaprolactone polydiols. The NCO/OH mol ratios of prepolymer were prepared by 2, 3, 4, 5, and 8, respectively. The chain lengths of the soft segments used were: PTMG of molecular weights 650, 1000, 2000, and 2900; PBA of 1000, 2000, and 3000. The results revealed that the polyether-based PU cast films had lower Tgs than the polyester-based PU films. In general, the polyether-based PU films shows the characters of higher water vapor permeability, lower breaking elongation, and higher breaking strength. Films with higher molecular weight soft segments in the polymer chains exhibited lower Tgs, lower breaking strength, higher breaking elongation, and higher water vapor permeability. As the hard segment contents were increased, the films exhibited higher Tgs. Films with higher hard-segment ratios had the highest breaking strength but the water vapor permeability, on the other hand, became lower. Films cast from the solvent evaporation method had higher breaking strength and higher breaking elongation but lower water vapor permeability than films cast from the wet coagulation method. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
Stable and high solid content (about 50 wt%) St/BA emulsifier-free latexes were successfully synthesized using emulsifier-free emulsion polymerization with the addition of a small amount of reactive emulsifier AMPS. Properties of the latexes, such as the average particle diameter and its distribution, the morphology of latex particles, and stability were investigated. Physical properties of the latex films, i.e., glass transition temperature (T g), water resistance, and solvent resistance were investigated as well. The size of latex particles is 400–600 nm in diameter, which is larger than that prepared by conventional emulsion polymerization. And the particle size distribution is narrow and uniform. It was found that the diameter of the latex particles decreases with the increasing content of the initiator KPS and the reactive emulsifier AMPS. Compared with the film prepared by conventional emulsion polymerization, water resistant and solvent resistant of the films prepared by emulsifier-free emulsion polymerization are improved greatly.  相似文献   

7.
马英子  肖新颜 《化工学报》2011,62(4):1143-1149
采用原位乳液聚合法,在可聚合阴离子乳化剂/非离子乳化剂复配体系下,以γ-甲基丙烯酰氧丙基三甲氧基硅烷(KH-570)改性的纳米SiO2、甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)、丙烯酸(AA)等为核相组成,以MMA、BA及甲基丙烯酸十二氟庚酯(DFMA)为壳相单体,合成纳米SiO2/含氟聚丙烯酸酯复合乳液.考察了纳...  相似文献   

8.
The mechanical properties of films prepared from model high‐glass‐transition‐temperature (Tg)/low‐Tg latex blends were investigated with tensile testing and dynamic mechanical analysis. Polystyrene (PS; carboxylated and noncarboxylated) and poly(n‐butyl methacrylate‐co‐n‐butyl acrylate) [P(BMA/BA); noncarboxylated] were used as the model high‐Tg and low‐Tg latexes, respectively. Carboxyl groups were incorporated into the PS latex particles to alter their surface properties. It was found that the presence of carboxyl groups on the high‐Tg latex particles enhanced the Young's moduli and the yield strength of the PS/P(BMA/BA) latex blend films but did not influence ultimate properties, such as the stress at break and maximum elongation. These phenomena could be explained by the maximum packing density of the PS latex particles, the particle–particle interfacial adhesion, and the formation of a “glassy” interphase. The dynamic mechanical properties of the latex blend films were also investigated in terms of the carboxyl group coverage on the PS latex particles; these results confirmed that the carboxyl groups significantly influenced the modulus through the mechanism of a glassy interphase formation. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2788–2801, 2002  相似文献   

9.
The steady-state fluorescence technique was used to examine the healing and interdiffusion of polymer molecules as a function of solid content during annealing of latex films above the glass transition (Tg). Films were prepared from a mixture of naphthalene (N)- and pyrene (P)-labeled poly(methy methacrylate) (PMMA) latex particles. Above Tg, interdiffusion of polymer chains was observed by detecting the steady-state energy transfer from excited naphthalene to pyrene molecules. Various latex films with different latex content were used to measure the critical occupation percent for the reliable steady-state fluorescence measurements. Diffusion activation energies in these latex films were measured and found to be around 30 kcal/mol, which was attributed to the backbone motion of PMMA chains. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
Two types of maleic acid diesters, dibutyl maleate (DBM) and dioctyl maleate (DOM) were used as comonomers in semicontinuous emulsion copolymerization of vinyl acetate (VAc) in order to improve the film properties of poly(vinyl acetate), PVAc emulsion polymer. The effects of the comonomer type and comonomer ratio on minimum film forming temperature (MFFT), glass transition temperature (Tg), polymer structure, molecular weights, water contact angle and water resistance of PVAc latex films were examined. It was found that MFFT and Tg of the PVAc emulsion polymer decreased by the presence of the maleic acid disters in copolymer composition. This decrease was more affected by the increasing content and alkyl chain length of the comonomers. The molecular weights of the emulsion polymers were also affected by the comonomers and their ratios. Moreover, hydrophobicity and water resistance of the PVAc latex films were increased by using DBM and DOM as comonomer.  相似文献   

11.
Two component topologically interpenetrating polymer networks of the SIN type (simultaneous interpenetrating networks) composed of a melamine-cured polyacrylate and three different polyether-based polyurethanes were prepared. The linear polymers and prepolymers were combined in solution, together with the necessary crosslinking agents and catalysts, films were cast and subsequently chain extended and crosslinked in situ. In all cases, maxima in tensile strength significantly higher than the tensile strengths of the component networks occurred at 50% polyurethane : 50% polyacrylate. This was explained by an increase in crosslink density resulting from interpenetration. One of the interpenetrating polymer networks showed only one glass transition temperature (Tg) (measured calorimetrically) intermediate in temperature to the Tg's of the components and as sharp as the component Tg's. This is indicative of phase mixing and indicates at least partial chain entanglement (interpenetration). Some enhancement of other physical properties was also noted.  相似文献   

12.
The polyacrylate/silica composite latexes were prepared by directly mixing silica particles with polyacrylate modified by γ‐methacryloxypropyltrimethoxysilane (MPS). Fourier transform infrared (FTIR) spectra and X‐ray photoelectron spectroscopy (XPS) analysis of polyacrylate/silica composite films confirmed the sol‐gel processes occurred to form Si–O–Si crosslinking bonds during the process of film‐formation. Transmission electron microscope (TEM) images revealed that the polyacrylate latexes were in contact with silica particles while some silica particles stayed together. Atomic force microscope (AFM) photos showed that organic and inorganic phases were strictly connected with each other and silica particles were embedded in the polymeric matrix with a size range of 20–50 nm. Differential scanning calorimetry (DSC) curves demonstrated that the composite film with 3% MPS has higher Tg than those of pure polyacrylate films. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42417.  相似文献   

13.
Acrylic latex laminating adhesives (ALLAs) were successfully prepared via a monomer-starved seeded semi-continuous emulsion polymerization with butyl acrylate (BA), methyl methacrylate (MMA), styrene (St), acrylamide (Am), and methacrylate glycidyl ether (GMA) as monomers. Impacts of GMA on the final latex, the dried latex films and the adhesive properties of ALLAs were investigated, respectively. The results indicated that the increase of GMA contents in the pre-emulsion feed has no apparent effect on the final latex average particle size and size distribution, while the gel contents, glass transition temperature (Tg) and water contact angle of the ALLAs gradually increased, and the molecular weight (Mn, Mw) obviously increased. Additionally, as the amount of GMA increased from 0 to 10?wt%, the maximum peel strength of the composite films reached 3.72 N/15mm with 5?wt% GMA contents. When heated to 65?°C, the peel strength of the composite films with 5?wt% of GMA can still maintain an acceptable peel strength (2.51 N/15mm) for application, showing excellent adhesive performance and heat resistance properties.  相似文献   

14.
Drying in the absence of water (sintering) of pigmented coatings made of styrene–butadiene (SB) latex and kaolin clay at different levels of pigmentation was investigated. As found from X-ray photoelectron spectroscopy, sintered coatings showed a higher SB area percent on the surface than did latex with a high glass-transition temperature (Tg) and dried at room temperature. This was a result of latex spreading at the surface. Sintering the high-Tg coatings that were dried at room temperature caused a decrease in the surface energy. Drying in the presence of water (wet coalescing) was compared to drying in the absence of water (sintering). Even though sintered coatings were more porous and had higher gloss, no significant difference was found in the SB/clay ratio at the surface or in the surface energy above the critical pigment volume concentration (CPVC). However, at and below CPVC, the sintering process yielded a higher SB content at the surface and a lower surface energy than the wet-coalescing process. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 968–975, 2001  相似文献   

15.
Scanning probe microscopy (SPM) was used to study the thermal characteristics of latex films consisting of blends of two different styrene-butadiene copolymers with different glass transition temperatures (Tg). The resonance frequency (ω) and the quality factor (Qp) of an SPM probe oscillating above the sample surface were determined at different probe temperatures (Tp). Thermal transitions associated with a change in heat capacity were observed in the Δω-Tp curves. The results were compared with differential scanning calorimetry measurements. The very slow heating rate used in the SPM method effectively eliminated the contribution of volumetric changes of the films around Tg. Annealing of the samples in an oven did not influence the thermal transitions observed in the Δω-Tp curves. The SPM method also enabled a novel approach for determining transition-induced dimensional changes (vertical contraction, expansion) of the films. Annealing was found to increase the dimensional stability of the blend films. The latex blends were also annealed by the SPM probe and the film progressed from particulate phase morphology to a continuous phase. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
Self crosslinkable core‐shell polyacrylate latices (PAs) cured at ambient temperature were synthesized by semicontinuous‐seeded emulsion polymerization with diacetone acrylamide (DAAM) and adipic dihydrazide (ADH) as crosslinkable monomers. The influences of DAAM monomer mass content, neutralizer, and curing temperature on the properties of self crosslinkable core‐shell latices and the keto‐hydrazide crosslinking were discussed. The spectroscopic techniques such as Fourier transform infrared spectroscopy (FTIR), differential scanning calorimeter (DSC), atomic force microscopy (AFM), transmission electron microscopy (TEM), and contact angle instruments were used to determine the structure and properties of PAs. The water evaporating rate during the film‐forming process of self crosslinkable core‐shell latices was also investigated. FTIR analyses demonstrate that the keto‐hydrazide crosslinking reaction does not occur in the latex environment but occurs at ambient temperature with the evaporation of water during the film‐forming process. The results of DSC show that the core‐shell crosslinkable PAs have two glass transition temperatures (Tg), and Tgs of crosslinked film are higher than that of non crosslinked fim. Moreover, the keto‐hydrazide reaction is found to be acid catalyzed and favored by the loss of water and the simultaneous decrease in pH arising from the evaporation of ammonia or amines during film‐forming process. Hence, in the volatile ammonia or amines neutralized latices, the latex pH value adjusted to 7–8, which not only ensure the crosslinkable latex with good storage stability but also obtain a coating film with excellent performances by introducing the keto‐hydrazine crosslinking reaction. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
This study describes the effects of the addition of inorganic nanosized UV absorbers on physico-mechanical and thermal properties of an exterior commercial acrylic-based waterborne stain for wood. Electronic microscopy and water vapor (WV) permeability measurements were performed to characterize the free films of the acrylic stain and resulting nanocomposite coatings. An accelerated weathering method was used to evaluate aging behavior of the coatings on wood through appearance, Tg, abrasion resistance, adhesion strength, hardness and Young's modulus changes. In addition to improving the protection against UV, the doped TiO2 and silica-coated ZnO nanoparticles in powder form have improved the abrasion resistance and barrier effect against water vapor diffusion of the acrylic stain. For most of nanocomposite coatings, the addition of ZnO hydrophilic nanoparticles in predispersed form has resulted in a decrease in WV permeability, while the adhesion strength and abrasion resistance of those coatings were negatively affected. The addition of ZnO nanoparticles has decreased the Tg of the acrylic stain. Finally, the accelerated weathering has induced an increase in Tg, hardness, Young's modulus (stiffness) and an increase in apparent adhesion strength and abrasion resistance of the coatings. The Tg values of the aged nanocomposite coatings were lower than that of unmodified acrylic stain.  相似文献   

18.
The water‐based polyacrylate microemulsion for ultrahigh molecular weight polyethylene (UHMWPE) fibers adhesive coating was synthesized by the emulsion polymerization of methyl methacrylate (MMA), butyl acrylate (BA), acrylic acid (AA), and hydroxyethyl acrylate (HEA) in the presence of a composite of sodium lauryl sulfate (SLS), OP‐10, and n‐octyl alcohol (NOA) as the emulsifier. The effects of the mass fraction of emulsifier and the reaction time on the properties of emulsion and its membrane were investigated. When m(BA) : m(MMA) : m(AA) : m(HEA) was 50 : 50 : 3 : 10 (wt ratio) and the mass fraction of emulsifier was 13 wt % and the reaction time was 3 h at 80°C, the latex particle diameter was 30 nm tested by transmission electron microscope (TEM). The Fourier transform infrared (FTIR) spectrometer and differential scanning calorimeter (DSC) were used to characterize the chemical structure and the glass transition temperature (Tg) of microemulsion membrane. The application results showed that this microemulsion was an ideal adhesive coating for UHMWPE fibers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

19.
The potentiometric titration of carboxylated methyl methacrylate latexes prepared with varying amounts of methacrylic acid showed that only very small amounts of their total acids copolymerized were neutralized at room temperature until the acid level was well above 10%. However, it was found that all the acids copolymerized were completely titrated either in a 50/50 water/ethanol mixture at room temperature or in water at high temperatures near their backbone polymer T gs, regardless of their acid contents, as predicted from the existing theories on the alkali-swelling of carboxylated latexes. It was also found that these high-temperature alkali-swollen latex particles remained in the swollen state even after they were cooled down to room temperature and became film-forming at much lower temperatures. This discovery led to a new technology coined as a high-temperature water-extended latex technology. This new technology enabled us to develop VOC-free water-extended latexes of high-T g polymers that would exhibit good film formation at ambient temperature and turn into hard and non-blocking latex films and latex-bound pigmented coatings upon drying. Particularly, when fugitive bases were used for neutralization at high temperatures, the resulting water-extended latexes became hard, non-blocking, and water-resistant binders upon drying.  相似文献   

20.
The polymer latex of poly(MMA‐AA) was synthesized using two techniques: soapless seeded emulsion polymerization, and the soapless emulsion copolymerization technique. The reaction kinetics, morphology, composition, and size of latex particles, as well as the structure using thin‐layer chromatographic separation techniques, glass transition temperature (Tg), and molecular weight of polymer products, were studied under different experimental conditions. The reaction of the hydrophilic AA monomer took place in two places—on or in the latex particles, and in the water phase. Therefore, the polymer latex, whose size is very small and uniform, dispersed uniformly all over the PAA continuous phase. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 3111–3120, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号