首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many efforts have been made to obtain uniform cell structures from foam injection molding techniques. However, cell nucleation mechanism and complex dynamics during the cell formation have rarely been well understood. Here, high‐pressure foam injection molding (HPFIM) is achieved by combining the injection–compression molding with core back foaming (ICMCBF) technique. The influences of compression pressure and time on the cell structure of polystyrene foam during the foaming process are studied. Compared with low pressure for conventional foam injection molding, high compression pressure (200 bar) and fast pressure drop rate of ICMCBF endow the foam with the highest cell density (1.59 × 107 cells cm?3), and the smallest cell size (15 µm). The tensile strength and impact strength are enhanced by about 60% (from 22.3 to 35.6 MPa) and 80% (from 3.6 to 6.8 MPa), respectively. This study gives a critical understanding of the cell nucleation and growth mechanism of the foam injection molding and supplies a new strategy for the fabrication of foam with uniform cell structure.  相似文献   

2.
Intercalated and exfoliated polystyrene/nano‐clay composites were prepared by mechanical blending and in situ polymerization respectively. The composites were then foamed by using CO2 as the foaming agent in an extrusion foaming process. The resulting foam structure is compared with that of pure polystyrene and polystyrene/talc composite. At a screw rotation speed of 10 rpm and a die temperature of 200°C, the addition of a small amount (i.e., 5 wt%) of intercalated nano‐clay greatly reduces cell size from 25.3 to 11.1 μm and increases cell density from 2.7 × 107 to 2.8 × 108 cells/cm3. Once exfoliated, the nanocomposite exhibits the highest cell density (1.5 × 109 cells/cm3) and smallest cell size (4.9 μm) at the same particle concentration. Compared with polystyrene foams, the nanocomposite foams exhibit higher tensile modulus, improved fire retardance, and better barrier property. Combining nanocomposites and the extrusion foaming process provides a new technique for the design and control of cell structure in microcellular foams.  相似文献   

3.
In this study, microcellular foaming of low‐density polyethylene (LDPE) using nano‐calcium carbonate (nano‐CaCO3) were carried out. Nanocomposite samples were prepared in different content in range of 0.5–7 phr nano‐CaCO3 using a twin screw extruder. X‐ray diffraction and scanning electron microscopy (SEM) were used to characterize of LDPE/nano‐CaCO3 nanocomposites. The foaming was carried out by a batch process in compression molding with azodicarbonamide (ADCA) as a chemical blowing agent. The cell structure of the foams was examined with SEM, density and gel content of different samples were measured to compare difference between nanocomposite microcellular foam and microcellular foam without nanomaterials. The results showed that the samples containing 5 phr nano‐CaCO3 showed microcellular foam with the lowest mean cell diameter 27 μm and largest cell density 8 × 108 cells/cm3 in compared other samples. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

4.
In order to obtain high electrical conductive low-density polyethylene (LDPE) foam, carbon black (CB), single-wall carbon nanotube (SWCNT), and LDPE (CB/SWCNT/LDPE) ternary composite foams were successfully fabricated by chemical compression molding method. The electrical conductivity, mechanical properties, microstructure, density, and crystallinity of the foam were studied in detail. It can be found that CB and SWCNT have synergistic effect. For the CB/SWCNT/LDPE composite foam which containing 19 wt % CB and 0.05 wt % SWCNT, its density is only 0.082 g cm−1 and the electrical conductivity can reach at 2.88 × 10−5 S cm−3, which is far more than 15 orders of magnitudes of pure polyethylene and 4 orders of magnitudes times higher than sample which CB content is 19 wt %. It is noteworthy that ultralow concentration of SWCNT could drastically improve the electrical conductivity and reduce the density of LDPE foams. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48382.  相似文献   

5.
Thermoplastic polyamide elastomer (TPAE) is a kind of high-performance elastomers prepared from nylon hard segments and polyether or polyester soft segments. The hard segments endow TPAE with excellent mechanical properties, while the soft segments provide the desired elasticity. Therefore, the development of TPAE as a high-performance foam material has broad application prospects. In this work, ethylene-vinyl acetate copolymer/polyamide-1012 elastomer (EVA/TPAE1012) composite materials with different compositions were prepared, using ethylene-vinyl acetate /maleic anhydride graft copolymer (EVA-g-MAH) as compatibilizer. Then, EVA/TPAE foamed materials were fabricated by chemical foaming method and batch foaming process, with azodicarbonamide as blowing agent. The resulting composite foams were tested in terms of density, cell properties hardness, resilience, compression recovery, and mechanical strength. The EVA/TPAE1012 foam has a low density (0.14 g cm−3), small cell size (approximately 62.1 μm), and a high cell density (3.08 × 107 cells cm−3). Compared with pure EVA foam, the composite foam not only has an increase in specific strength, resilience and tearing strength, but also has good toughness, which greatly improves the resulting foams' expansion ratio and elongation at break.  相似文献   

6.
In this paper, a study on the batch processing and characterization of microcellular foamed high-density polyethylene (HDPE/iPP) blends is reported. A microcellular plastic is a foamed polymer with a cell density greater than 109 cells/cm3 and fully grown cells smaller than 10 µm. Recent studies have shown that the morphology and crystallinity of semicrystalline polymers have a great influence on the solubility and diffusivity of the blowing agent and on the cellular structure of the resulting foam in microcellular batch processing. In this research, blends of HDPE and iPP were used to produce materials with variety of crystalline and phase morphologies to enhance the subsequent microcellular foaming. It was possible to produce much finer and more uniform foams with the blends than with neat HDPE and iPP. Moreover, the mechanical properties and in particular the impact strength of the blends were significantly improved by foaming.  相似文献   

7.
In this article, a conductive foam based on a novel styrene‐based thermoplastic elastomer called poly(styrene‐b‐butadiene‐co‐styrene‐b‐styrene) tri‐block copolymer S(BS)S was prepared and introduced. S(BS)S was particularly designed for chemical foaming with uniform fine cells, which overcame the shortcomings of traditional poly(styrene‐b‐butadiene‐b‐styrene) tri‐block copolymer (SBS). The preparation of conductive foams filled by the carbon black was studied. After the detail investigation of cross‐linking and foaming behaviors using moving die rheometer, the optimal foaming temperature was determined at 180°C with a complex accelerator for foaming agent. Scanning electron microscopy (SEM) images shown that the cell bubbles of conductive foam were around 30–50 µm. The conductivity of foams was tested using a megger and a semiconductor performance tester. SEM images also indicated that the conductivity of foams was mainly affected by the distribution of carbon black in the cell walls. The formation of the network of the carbon black aggregates had a contribution to perfect conductive paths. It also found that the conductivity of foams declined obviously with the foaming agent content increasing. The more foaming agent led to a sharp increasing of the number of cells (from 2.93 × 106 to 6.20 × 107 cells/cm3) and a rapid thinning of the cell walls (from 45.3 to 1.4 µm), resulting in an effective conductive path of the carbon black no forming. The conductive soft foams with the density of 0.48–0.09 g/cm3 and the volume resistivity of 3.1 × 103?2.5 × 105 Ω cm can be easily prepared in this study. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41644.  相似文献   

8.
This article reports an attempt to improve polypropylene (PP) microcellular foaming through the blending of PP with high‐density polyethylene (HDPE) as a minor component and the incorporation of nano‐calcium carbonate (nano‐CaCO3) into PP and its blends with HDPE. Three HDPEs were selected to form three blends with a viscosity ratio less than, close to, or greater than unity. Two concentrations of nano‐CaCO3, 5 and 20 wt %, were used. The blends and nanocomposites were prepared with a twin‐screw extruder. The foaming was carried out by a batch process with supercritical carbon dioxide as a blowing agent. The online shear viscosity during compounding and the dynamic rheological properties of some samples used for foaming were measured. The cell structure of the foams was examined with scanning electron microscopy (SEM), and the morphological parameters of some foams were calculated from SEM micrographs. The rheological properties of samples were used to explain the resulting cell structure. The results showed that the blend with a viscosity ratio close to unity produced a microcellular foam with the minimum mean cell diameter (0.7 μm) and maximum cell density (1.17 × 1011 cells/cm3) among the three blends. A foamed PP/nano‐CaCO3 composite with 5 wt % nano‐CaCO3 exhibited the largest cell density (8.4 × 1011 cells/cm3). © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
Summary: Via a batch process in an autoclave, foam processing of intercalated PC/clay nanocomposites, having different amounts of clay, has been conducted using supercritical CO2 as a foaming agent. The cellular structures obtained from various foaming temperature‐CO2 pressure ranges were investigated by SEM. The incorporation with nanoclay‐induced heterogeneous nucleation occurs because of a lower activation energy barrier compared with homogeneous nucleation as revealed by the characterization of the interfacial tension between bubble and matrix. The controlled structure of the PCCN foams changed from microcellular (d ? 20 µm and Nc ? 1.0 × 109 cells · cm?3) to nanocellular (d ? 600 nm and Nc ? 3.0 × 1013 cells · cm?3). The mechanical properties of PCCN foams under compression test were discussed.

TEM micrograph for the structure of the cell wall foamed at 160 °C.  相似文献   


10.
In this study, we mainly investigate the solid‐state foaming of polyether ether ketone (PEEK) with different crystallinities using supercritical CO2 as a physical blowing agent. The gaseous mass‐transfer and thermophysical behaviors were studied. By altering the parameters of the foaming process, microcellular foams with different cell morphologies were prepared. The effect of crystallization on the cell morphology was also investigated in detail. The results indicate that the crystallization restricts gas diffusion in the material, and the thermophysical behaviors of the saturated PEEK sample with low crystallinity presents two cold crystallization peaks. The cell density decreases and the cell size increases as the saturation pressure increases. The cell density of the microcellular foams prepared under 20 MPa is 1.23 × 1010 cells/cm3, which is almost 10 times compares to that under 8 MPa. The cell size increases as the foaming time extends or the foaming temperature increases. It is interesting that the cell morphology with a bimodal cell‐size distribution is generated when the samples are foamed at temperatures higher than 320°C for a sufficient time. Additionally, nanocellular foams can be obtained from a highly crystallized PEEK after the decrystallization process. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42576.  相似文献   

11.
Through a chemical polymerization of pyrrole inside ultrahigh molecular weight polyethylene (UHMWPE) foam, a conducting polymer composite was obtained. To produce conductive polymer foams, successive imbibiting of reactives, FeCl3 and pyrrole in tetrahydrofuran solutions, were carried out. The conductive polymeric materials were characterized by FTIR, DSC, and SEM. Mechanical property measurements were carried out on the films prepared by the compression molding of the conductive foam polymers. These films showed rather high tensile strength compared to pure UHMWPE. Conductivity determined by a two‐probe technique showed that it increased with the pyrrole content in the UHMWPE foam matrix. The compression molding, however, resulted in a considerable reduction in the conductivities. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1843–1850, 1999  相似文献   

12.
To reduce environmental pollution and oil shortages, biodegradable polylactide (PLA) from plants was used to replace synthetic plastic from petroleum. In this study, high‐melt‐viscosity PLA was achieved through the in situ reaction of carboxyl‐ended polyester (CP) and solid epoxy (SE) first; then, PLA foams were successfully prepared by a chemical compression‐molding method. The detailed foaming factors were also studied, including the decomposition temperature of the blowing agent, the foam temperature, and the open‐mold temperature. The results reveal that the obtained PLA foams had good water absorption and degradable properties, and the foam density was low as 0.16 g/cm3. Moreover, the effects of the CP/SE concentration and the AC content on the properties of the foams were also investigated. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
In this study, Ti2AlC foams were fabricated by direct foaming and gel‐casting using agarose as gelling agent. Slurry viscosity, determined by the agarose content (at a fixed solids loading), as well as surfactant concentration and foaming time were the key parameters employed for controlling the foaming yield, and hence the foam porosity after sintering process. Fabricated foams having total porosity in the 62.5‐84.4 vol% range were systematically characterized to determine their pore size and morphology. The effect of the foam porosity on the room‐temperature compression strength and elastic modulus was also determined. Depending on the amount of porosity, the compression strength and Young's modulus were found to be in the range of 9‐91 MPa and 7‐52 GPa, respectively. Permeability to air flow at temperatures up to 700°C was investigated. Darcian (k1) and non‐Darcian (k2) permeability coefficients displayed values in the range 0.30‐93.44 × 10?11 m2 and 0.39‐345.54 × 10?7 m, respectively. The amount of porosity is therefore a very useful microstructural parameter for tuning the mechanical and fluid dynamic properties of Ti2AlC foams.  相似文献   

14.
A series of polyimide foam sheets (PIFSs) with thickness of 0.5 mm using 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA), 3,4′‐oxydianiline (3,4′‐ODA), and polyaryl polymethylene isocyanate (PAPI) as main materials were first fabricated by liquid foaming and compression molding technology. The effects of different PAPI contents and 3,4′‐ODA contents on the structures and properties of PIFSs were investigated. The results indicated that PIFSs exhibited a structure that front surface displayed closed cells made of damaged cell walls and membranes, while internal cells were open, and elliptic vacancies were flatted in the thickness direction from the cross section. The average cellular diameter increased with increasing PAPI loading. In addition, the introduction of 3,4′‐ODA increased the average cell size of PIFSs. Further, PIFSs had density of 0.087–0.239 g/cm3, elongation at break of 3.75–8.01% and tensile toughness of 3.46 × 10?2?13.87 × 10?2 J/cm3. Notably, they exhibited higher tensile strength of 1.89–5.42 MPa and lower thermal conductivity of 14.727–19.25 mW/m ?K at 24°C, compared to the polyimide foams reported earlier. The sound absorption coefficients (α) of samples with different PAPI contents increased and then decreased with increasing PAPI content. At low frequencies, a certain content of 3,4′‐ ODA allowed an improvement of the acoustical behavior of PIFSs, and the α increased and then decreased with increasing density. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39881.  相似文献   

15.
Foamed materials play an important role in a lightweight design. Foam injection molding (FIM) is an advanced and convenient way to fabricate lightweight structural materials. Recently, a new foam injection molding machine is developed, which only needs ultra-low gas pressure to fabricate microcellular foam. As a universal plastic, polypropylene (PP) is widely used due to its good mechanical properties. But after foaming, the toughness of the PP tends to decrease. Herein, a lightweight and high-impact polypropylene foam is fabricated via the new FIM technology with an ultra-low nitrogen pressure of 6.5 MPa. PP/polyolefin elastomer (POE) foam with a tiny cell size of 4.13 µm and high cell density of 2.7 × 109  cm3 is successfully obtained. Owing to the superior cellular structure, compared with the pure PP foam, after adding the POE component, the maximum impact performance is increased by 465%. In this work, an easy-to-industrialized method for preparing lightweight and high-impact injection-molded PP foams are presented.  相似文献   

16.
Microcellular foams in polypropylene containing rubber particles were produced in an injection molding process. The foams are generated because of the thermodynamic instability and are controlled by formation process. The effect of processing parameters on microcellular foaming was investigated in the injection molding process. Injection speed and pressure are less important factors but packing pressure plays an important role in controlling the foam density. A critical packing pressure, about 5 × 106 Pa, was found to generate microcellular foams in our polypropylene material system. Rubber particles inside the polypropylene seem to stabilize the microcellular foams.  相似文献   

17.
The rheological properties of molten LDPE and mPE foams have been measured for small‐amplitude oscillatory shear flow. The foam samples were prepared by injection molding, and the effect of injection conditions on the resultant cell structure is discussed. In all cases cellular foams with closed cells were obtained with cell densities in the range of 4 × 105 ? 7 × 106 cells/cm3 and cell diameters in the range of 30–110 μm. The viscoelastic behavior of the foams is shown to be well described by the emulsion model proposed by Palierne (1) without using any fitting parameter. The linear viscoelastic properties of LDPE and mPE foams depend only on the properties of the polymer matrix and of the gas volume fraction. The Palierne model is also used to predict the linear properties of microcellular foams. Polym. Eng. Sci. 44:2158–2164, 2004. © 2004 Society of Plastics Engineers.  相似文献   

18.
Several polymers were evaluated as candidates for the production of high‐performance microcellular closed‐cell foams. The polymers involved were a polysulfone, a polyethersulfone, a polyphenylsulfone, a polyetherimide, and a poly(ether ketone ketone), and their suitability was gauged by measuring rates at which they could be impregnated with carbon dioxide under pressure at room temperature. This step is essential to the subsequent step of heating the impregnated samples at various temperatures to create foamed structures. The present study focused primarily on the use of the polysulfone in this regard. Microcellular foams of this polymer were found to have average cell sizes in the range 1–10 μm and cell densities on the order of 1010–1014 cells/cm3. The microstructures of these foamed samples were controlled through careful choices of the foaming temperature and the foaming speed to produce a wide range of foam densities. Since these materials were prepared for possible use as structural materials, tensile tests were conducted to investigate the dependence of some of their mechanical properties on the foam densities (relative to those of the unfoamed polymer). The results indicated that the tensile moduli of these polysulfone foams increased with the square of their relative densities, and the tensile strengths were proportional to these densities. Both of these experimental findings are in agreement with theory. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1692–1701, 2002  相似文献   

19.
This study presents a self-designed foaming apparatus and routes to manufacture foamed isotactic polypropylene (iPP) blends with uniform and dense cells, using styrene-ethylene-butadiene-styrene (SEBS) block copolymer as toughening additive. The addition of SEBS can clearly enhance the impact strength of solid iPP, iPP blends with a 20 wt% SEBS has obtained high notched impact strength of 75 kJ/m2, which is ca. 16 times larger than that of neat iPP. Relatively fine microcellular iPP-SEBS foams with the average cell size of several micrometers, and the cell density of 109 cells/cm3 were fabricated using a batch foaming procedure. Moreover, using our self-designed mold and compression foaming method, iPP-SEBS foams with balanced mechanical properties were produced. With the increasing of SEBS, tensile strength and flexural strength were slightly decreased, but the impact strength was increased clearly. The balanced mechanical properties between stiffness and toughness were achieved after compression foaming.  相似文献   

20.
Open microcellular foams of polyethylene terephthalate (PET)/polycarbonate (PC) blends were prepared by controlling their foaming behavior at the interface between these two polymers. Interface modification was a crucial factor in governing the foaming behavior and cell morphology of the blend foams: annealing at 280°C, i.e., conducting the transesterification reaction, generates a PET‐b‐PC copolymer, which lowers the interfacial tension, increases the affinity between PET and PC, and decreases the crystallinity of the PET domains. When CO2 foaming was performed at the interface modified with the copolymer, an interesting fibril‐like structure was formed. The cell density of the PET/PC blend then increased, and its cell size reduced to the microscale while maintaining a high open‐cell ratio. The effect of heat annealing (transesterification reaction) on CO2‐foaming was studied to reveal the relationship among the interface affinity, crystallinity, and degree of fibrillation. The optimal heat‐annealing procedure generated a fibril‐like structure in the PET/PC blend foams with a high cell density (7 × 1011 cm?3), small cell size (less than 2 μm), and 100% open‐cell ratio. POLYM. ENG. SCI., 55:375–385, 2015. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号