首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Intermetallics》2000,8(9-11):1075-1079
An electron backscattered diffraction technique has been used to investigate detailed crystallographic features of a superplastic coarse-grained Fe–27 at.%Al alloy. Alloy samples studied have been tensile tested to failure at 800°C in air under an initial strain rate of 1×10−4 s−1. To examine processing effects, the hot isostatic pressing (HIP) has been applied prior to the superplastic deformation. The HIPed sample shows no observable pores in the fracture region while the sample without HIP reveals an elongated pore fracture structure. Nevertheless, HIP is shown to have no beneficial effects on the superplastic elongation, suggestive of the fact that the alleviation of cavity formation alone is insufficient in achieving better superplastic properties. After the superplastic deformation and the refined grains are formed, the presence of numerous small angle subboundaries in the large grain interior indicates the continuous event of recovery and recrystallization that occurs throughout the course of superplastic deformation. The post-deformation annealing yields a classic recrystallized large-grain structure, resulting from the surface-tension-induced boundary migration that reduces the grain surface-area. Conversely, the superplastic deformation of Fe–27 at.%Al involves a strain-induced boundary migration that causes the grain surface-area increase and results in a refined grain structure. The dynamic nature of recovery and recrystallization is therefore confirmed.  相似文献   

2.
Cylindrical samples of Ni-based GH4037 alloy were compressed at solid temperatures (1200, 1250 and 1300 °C) and semi-solid temperatures (1340, 1350, 1360, 1370 and 1380 °C) with different strain rates of 0.01, 0.1 and 1 s−1. High temperature deformation behavior and microstructure evolution of GH4037 alloy were investigated. The results indicated that flow stress decreased rapidly at semi-solid temperatures compared to that at solid temperatures. Besides, the flow stress continued to increase after reaching the initial peak stress at semi-solid temperatures when the strain rate was 1 s−1. With increasing the deformation temperature, the size of initial solid grains and recrystallized grains increased. At semi-solid temperatures, the grains were equiaxed, and liquid phase existed at the grain boundaries and inside the grains. Discontinuous dynamic recrystallization (DDRX) characterized by grain boundary bulging was the main nucleation mechanism for GH4037 alloy.  相似文献   

3.
通过获得镍钛形状记忆合金在应变速率(0.001~1 s-1)和变形温度(600~1000℃)下的压缩真实应力—应变曲线,研究镍钛形状记忆合金在热变形下的力学行为.通过显微组织演变研究镍钛形状记忆合金的动态回复和动态再结晶,获得应变速率、变形温度和变形程度对镍钛形状记忆合金的动态回复和动态再结晶的影响规律.镍钛形状记忆合金在600℃和700℃下,动态回复和动态再结晶共存,但在其他温度下表现出完全动态再结晶.增加变形温度或降低应变速率,导致较大的等轴晶粒.变形程度对镍钛形状记忆合金的动态再结晶具有重要的影响.在镍钛形状记忆合金的动态再结晶中存在临界变形程度,当大于临界变形程度时,较大的变形程度有助于获得细小的等轴再结晶晶粒.  相似文献   

4.
Microstructure evolution and hardness changes of an ultra-high strength Cu-Ni-Si alloy during thermo-mechanical processing have been investigated. For hot-compressive deformation specimens, dynamic recrystallization preferentially appeared on deformation bands. As deformation temperature increased from 750 to 900 °C, elongated grains with the Cubic texture {001} 〈100〉 were substituted by recrystallized grains with Copper texture {112} 〈111〉. For the samples having undergone cold rolling followed by annealing, static recrystallization preferentially occurred in the deformation bands, and then complete recrystallization occurred. Goss, Cubic, and Brass textures remained after annealing at 600 and 700 °C for 1 h; R texture {111} 〈211〉 and recrystallization texture {001} 〈100〉 were formed in samples annealed at 800 and 900 °C for 1 h, respectively. For samples processed under multi-directional forging at cryogenic temperature, the hardness was increased as a result of work hardening and grain refinement strengthening. These were attributed to the formation of equiaxed sub-grain structures and a high dislocation density.  相似文献   

5.
Hot compression tests of a new high-Mn austenitic steel were carried out at deformation temperatures of 700, 800, 900, and 1000 °C under strain rate of 0.01 s?1. The hot deformation behavior was investigated by the analyses of flow curves, texture, and deformed microstructures. Microstructures of the deformed specimens and macrotexture were examined using electron backscatter diffraction and x-ray diffraction methods, respectively. The results showed that the flow stress depended strongly on the deformation temperature and decreased by increasing deformation temperature. The microstructural evidence indicated that the dynamic recrystallization (DRX) process of experimental steel was initiated at 800 °C with necklace structure. The volume fraction of DRX grains was considerably increased by increasing deformation temperature to 1000 °C. Texture of the DRX grains tended to become a weak texture and was associated with the formation of Goss and R-Cube components. Meanwhile, martensitic transformation was detected in the hot-deformed austenite. The martensitic transformation was the most difficult in the DRX grains because of the effect of small grain size. The tendency of transformation was decreased after compression at 1000 °C.  相似文献   

6.
Methods of optical metallography and scanning and transmission electron microscopy were used to investigate the structure of low-carbon steels of martensitic classes VKS-7 and VKS-10 subjected to warm rolling or upsetting at temperatures of 600 and 700°C (in the α state) and 800°C (in the γ state). It has been shown that the deformation by rolling at 600°C to degrees of 40 and 60% does not lead to the destruction of the lath structure of the initial martensite; an increase in the rolling temperature to 700°C and of the degree of deformation to 80% favors the development of recrystallization in situ. It has been found that, upon warm deformation by upsetting, recrystallization occurs at lower temperatures than in the case of the warm rolling. It has been shown that warm deformation by upsetting at a temperature of 700°C leads to the formation of a fragmented structure with a high fraction of ultrafine grains with a size less than 2 μm.  相似文献   

7.
The hot deformation behavior of an ultra-pure 17%Cr ferritic stainless steel was studied in the temperature range of 750–1000 °C and strain rates of 0.5 to 10 s?1 using isothermal hot compression tests in a thermomechanical simulator. The microstructural evolution was investigated using electron backscattered diffraction and transmission electron microscopy. A modified constitutive equation considering the effect of strain on material constant was developed, which predicted the flow stress for the deformation conditions studied, except at 950 °C in 1 s?1 and 900 °C in 10 s?1. Decreasing deformation temperature and increasing strain was beneficial in refining the microstructure. Decreasing deformation temperature, the in-grain shear bands appeared in the microstructure. It is suggested that the dynamic softening mechanism is closely related to deformation temperature. At low deformation temperature, dynamic recovery was major softening mechanism and no dynamic recrystallization occurred. At high deformation temperature, dynamic softening was explained in terms of efficient dynamic recovery and limited continuous dynamic recrystallization. A drop in the flow stress was not found due to very small fraction of new grains nucleated during dynamic recrystallization.  相似文献   

8.
Powder metallurgical Ti-45Al-7Nb-0.3W (at.%) alloys were pack rolled at temperatures of 1240°C, 1255°C, 1270°C, and 1285°C. The microstructures were investigated by scanning electron microscopy (SEM) and transmission electron microscopy. The tensile properties were tested at room temperature and 800°C. After rolling, the sheets exhibited duplex microstructures with refined grains. The tensile test results showed the sheet rolled at 1270°C displayed excellent room temperature tensile properties with an ultimate tensile strength (UTS) of 782 MPa and an elongation of 1.95%. When tested at 800°C, all sheets showed UTS of over 600 MPa and elongations of around 50%. The dislocation movements and mechanical twinning played important roles at the initial stage of rolling deformation. However, during the subsequent deformation process, the deformation mechanism should mainly be the result of dynamic recrystallization.  相似文献   

9.
Nanocrystalline niobium with a grain size of the order of magnitude of 100 nm has been produced by the method of severe plastic deformation (high-pressure torsion). The evolution of its structure at various annealing temperatures in the range of 400–800°C has been studied using transmission electron microscopy. It has been found that at 400–600°C, recovery processes take place. Grain boundaries become thinner and more uniform, the dislocation density in the bulk of grains decreases, while the grain size does not increase, which means that the nanocrystalline structure is stable in this temperature range. An increase in the annealing temperature to 700°C leads to an intense recrystallization. Grain size increases by an order of magnitude, and the size-distribution width grows noticeably. The microhardness changes in accordance with the structure evolution.  相似文献   

10.
In this study, tensile behavior of Nb-containing 25Cr-20Ni austenitic stainless steels composed of coarse or fine grains has been investigated at temperatures ranging from room temperature to 900 °C. Results show that the tensile strength of fine-grained specimens decreases faster than that of coarse-grained specimens, as the test temperature increases from 600 °C to 800 °C. The rapidly decreasing tensile strength is attributed to the enhanced dynamic recovery and recrystallization, because additional slip systems are activated, and cross-slipping is accelerated during deformation in fine-grained specimens. After tensile testing at 700-900 °C, sigma phases are formed concurrently with dynamic recrystallization in fine-grained specimens. The precipitation of sigma phases is induced by simultaneous recrystallization as the diffusion of alloying elements is accelerated during the recrystallization process. Additionally, the minimum ductility is observed in coarse-grained specimens at 800 °C, which is caused by the formation of M23C6 precipitates at the grain boundaries.  相似文献   

11.
《Acta Materialia》2003,51(10):3005-3018
Static, isothermal recrystallization at a temperature of 400 °C was studied by means of quantitative microscopy in a well-characterized, commercial purity aluminum-alloy AA1050 that had undergone plane strain deformation at 400 °C at a strain rate of 2.5 s−1 to an equivalent strain of 2. The microstructural properties, Vv, the volume fraction recrystallized, Sv, the interfacial area density separating recrystallizing grains from deformed volumes and <λ>, the mean recrystallized grain free length, were all measured stereologically as a function of time and the reaction kinetics, microstructural path, grain boundary migration rates and nucleation characteristics of the recrystallization were quantified experimentally. The results are compared to a recently published study of recrystallization in the identical pre-deformation starting material but after room temperature deformation by rolling to a comparable strain. Recrystallization kinetics differences between the two materials include: the hot deformed material had a higher, by at least 120 °C, recrystallization temperature; had many fewer recrystallization nuclei leading to a factor of about three larger as-recrystallized grain size; lacked a Cahn-Hagel growth rate transient like the cold deformed exhibited; and required a slightly different impingement model for the microstructural path analysis. In both cases particle stimulated nucleation (PSN) was thought to be operative but it seemed to be much more potent after cold deformation.  相似文献   

12.
In this investigation, compression tests were performed at a strain rate of 0.001-0.1 s?1 in the range of 600-900 °C to study the high temperature deformation behavior and flow stress model of commercial purity (CP) titanium after severe plastic deformation (SPD). It was observed that SPD via equal channel angular extrusion can considerably enhance the flow strength of CP titanium deformed at 600 and 700 °C. Post-compression microstructures showed that, a fine grained structure can be retained at a deformation temperature of 600 °C. Based on the kinematics of dynamic recovery and recrystallization, the flow stress constitutive equations were established. The validity of the model was demonstrated with reasonable agreement by comparing the experimental data with the numerical results. The error values were less than 5% at all deformation temperatures except 600 °C.  相似文献   

13.
《Intermetallics》2000,8(9-11):1067-1074
The hot working behavior of a Fe–24 wt.% Al iron aluminide alloy processed by the powder metallurgy route has been studied in the temperature range 750–1150°C and strain rate range 0.001–100 s−1 by establishing processing maps at different strains in the range 0.1–0.5. The features in the processing maps have changed with strain suggesting that the mechanisms of hot deformation are evolving with strain. Early in the deformation (strain of 0.1), the map exhibited a single domain with a peak efficiency of power dissipation of about 44% occurring at about 1100°C and a strain rate of about 0.03 s−1. This domain represents dynamic recrystallization (DRX) of the initial material possibly causing a substantial grain refinement. With increasing strain, a bifurcation has occurred giving rise to two domains: (1) at strain rates lower than about 0.1 s−1 and temperatures above 1000°C, superplastic deformation has occurred, and (2) at strain rates higher than about 10 s−1 and temperatures above 1125°C, DRX has occurred. The material exhibited flow localization at lower temperatures and higher strain rates. On the basis of the processing maps, the optimum processing routes available for hot working of this material are outlined.  相似文献   

14.
采用高温等温压缩试验,对Cu?Ni?Si?P合金在应变速率0.01~5?1、变形温度600~800°C条件下的高温变形行为进行了研究,得出了该合金热压缩变形时的热变形激活能Q和本构方程。根据实验数据与热加工工艺参数构建了该合金的热加工图,利用热加工图对该合金在热变形过程中的热变形工艺参数进行了优化,并利用热加工图分析了该合金的高温组织变化。热变形过程中Cu?Ni?Si?P合金的流变应力随着变形温度的升高而降低,随着应变速率的提高而增大,该合金的动态再结晶温度为700°C。该合金热变形过程中的热变形激活能Q为485.6 kJ/mol。通过分析合金在应变为0.3和0.5时的热加工图得出该合金的安全加工区域的温度为750~800°C,应变速率为0.01~0.1 s?1。通过合金热变形过程中高温显微组织的观察,其组织规律很好地符合热加工图所预测的组织规律。  相似文献   

15.
Phenomena and mechanism on superplasticity of duplex stainless steels   总被引:1,自引:0,他引:1  
The superplasticity of Fe-24Cr-7Ni-3Mo-0.14N duplex stainless steel after being solution treated at 1350°C followed by 90% cold rolling was investigated at 850°C with a strain rate ranging from 10-3-10-1s-1. The microstructure of duplex stainless steel consists of a matrix γ phase having low angle grain boundaries and a σ phase as second phase particles before the deformation at 850°C. It is well known that the constituent phases in duplex stainless steel is changed following α→α+γ→α+γ+σ→γ+σ through phase transformation during deformation at 850°C. The final microstructure of duplex stainless steel consisted of 70 vol.% of γ and 30 vol.% of the σ phase. A maximum elongation of 750% was obtained at 850°C with a strain rate of 3.16xl0-3s-1. The dislocation density within matrix γ grains was low and a significant strain-induced grain growth was observed during the deformation. The misorientation angles between the neighboring γ grains increased as the strain increased, thus the low angle grain boundaries were transformed into high angle grain boundaries suitable for sliding by dynamic recrystallization during the deformation at 850°C. The grain boundary sliding assisted by dynamic recrystallization is considered to be a controlling mechanism for superplastic deformation at 850°C.  相似文献   

16.
Fe3Si polycrystals having a large initial grain size of about 92 μm exhibit a large tensile elongation exceeding 200% at 1173 K and at 4.68×10−4 s−1. A stress–strain curve corresponding to the large tensile elongation is characterized by a steady state flow after an initial work hardening at a small plastic strain until final fracture. The apparent activation energy and strain rate sensitivity index is estimated to be 120 kJ/mol and 0.30, respectively. The deformation microstructure responsible for the large elongation consists of a well-defined subgrain microstructure with a low dislocation density within dynamic recrystallization (DRX) grains evolved during high temperature deformation. Large elongation is achieved by glide motion of 〈001〉 type dislocations. It is suggested that glide and climb motion of 〈001〉 type dislocations leads to simultaneous and/or alternate occurrence of DRX and dynamic recovery (DRV), which retards the initiation of plastic instability and results in large elongation.  相似文献   

17.
The hot compression deformation behavior of Cu–3Ti–0.1Zr alloy with the ultra-high strength and good electrical conductivity was investigated on a Gleeble–3500 thermal-mechanical simulator at temperatures from 700 to 850 °C with the strain rates between 0.001 and 1 s−1. The results show that work hardening, dynamic recovery and dynamic recrystallization occur in the alloy during hot deformation. The hot compression constitutive equation at a true strain of 0.8 is constructed and the apparent activation energy of hot compression deformation Q is about 319.56 kJ/mol. The theoretic flow stress calculated by the constructed constitutive equation is consistent with the experimental result, and the hot processing maps are established based on the dynamic material model. The optimal hot deformation temperature range is between 775 and 850 °C and the strain rate range is between 0.001 and 0.01 s−1.  相似文献   

18.
Near net shaped Ti−45Al−7Nb−0.3W alloy (at.%) parts were manufactured by hot isostatic pressing (HIP). The microstructure and high-temperature mechanical properties of the alloy were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that at a temperature of 700 °C, the peak yield stress (YS) and ultimate tensile stress (UTS) of alloy are 534 and 575 MPa, respectively, and the alloy shows satisfactory comprehensive mechanical properties at 850 °C. The alloy exhibits superplastic characteristics at 1000 °C with an initial strain rate of 5×10−5 s−1. When the tensile temperature is below 750 °C, the deformation mechanisms are dislocation movements and mechanical twinning. Increasing the tensile temperature above 800 °C, grain boundary sliding and grain rotation occur more frequently due to the accumulation of dislocations at grain boundary.  相似文献   

19.
A method for recycling AZ91D magnesium alloy chips by solid-state recycling was studied. The experiments were carried out adopting the cold-press pressure and hot extrusion. The results indicate that recycled specimens of AZ91D magnesium alloy present better mechanical properties and consist of fine grains due to dynamic recrystallization. The mechanisms of dynamic recrystallization depend on plastic deformation process and change with the deformation temperature. At 300-350 °C, the deformation mechanisms are associated with the operation of basal slip and twinning, and the “necklace” structures are formed. At 350-400 °C, the cross slip results in the formation of new grains and grain refinement. At above 400 °C, the dynamic recrystallization mechanisms are controlled by dislocation climb, and recrystallized grains are homogeneous. The tensile strength of recycled specimens increases with the increase of the strain rate. When the strain rate is overhigh, the cracks and fractures in the surface appear and affect the tensile strength of recycled specimens.  相似文献   

20.
The 3003 aluminum alloys with four different initial grain sizes were deformed by isothermal compression in the range of deformation temperature 300–500 °C at strain rate 0.01–10.0 s?1 with Gleeble-1500 thermal simulator. The results show that the smaller the initial grain size of the alloy, the greater the required deformation resistance, and the smaller the peak strain, which is conducive to the occurrence of dynamic recrystallization (DRX). The DRX critical strain increases with the decrease of the deformation temperature or the increase of the strain rate, and the DRX volume fraction increases with the decrease of the strain rate and the increase of the deformation temperature. The average grain size of 3003 aluminum alloy after deformation is smaller than that before deformation. The smaller the initial grain size, the lower the critical recrystallization strain. So the DRX is carried out more fully, contributing to the thermoplastic deformation of the alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号