首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Natural fibers are a powerful competitor in the polymer composite market due to their availability, sustainability, obtainability, cost, and biodegradability. The surface of natural fibers was changed to increase mechanical qualities, hydrophobicity, and bonding with polymer matrix. This study exposes the influence of several surface treatments of coconut tree peduncle fibers (CTPFs) on the thermomechanical and water absorption properties of CTPF-reinforced polymer composites. The CTPFs were treated with sodium hydroxide, benzoyl peroxide, potassium permanganate and stearic acid at a constant 40 wt% and individually reinforced in an unsaturated polyester resin matrix containing 60 wt% CTPFs. Chemically treated CTPFs improved reinforcement-matrix adhesion and enhanced composite mechanical characteristics. In addition, the scanning electron microscope fractographical study of stressed composite specimens shows improved reinforcement-matrix bonding. Moreover, the treated CTPFs have a higher cellulose wt%, which improves the composites crystalline nature, hydrophobicity and thermal stability. The potassium permanganate treated CTPF composite's maximum tensile strength of 128 MPa, flexural strength of 119 MPa, impact strength of 9.9 J/cm2, hardness value of 99 HRRW and thermal stability up to 193°C make them appropriate for lightweight mobility and structural applications.  相似文献   

2.
In this research, 9 series of ramie fibers were treated under low-temperature plasma with diverse output powers and treatment times. By analysis of the surface energy and adhesion power with epoxy resin, 3 groups as well as control group were chosen as reinforced fibers of composites. The influences of these parameters on the ramie fiber and its composites such as topography and mechanical properties were tested by scanning electron microscopy (SEM), atomic force microscopy (AFM), tensile property and fragmentation test of single-fiber composites. Contact angle and surface free energy results indicated that with the increased treatment times and output powers, surface energy and adhesion work with epoxy resin improved. Compared with the untreated fibers, surface energy and adhesion work with epoxy resin grew 124.5 and 59.1% after 3 min-200 w treatment. SEM and AFM showed low temperature plasma treatment etched the surface of ramie fiber to enhance the coherence between fiber and resin, consequently fiber was not easy to pull-out. After 3 min-200 w treatment, tensile strength of ramie fiber was 253.8 MPa, it had about 30.5% more than that of untreated fiber reinforced composite. Interface shear stress was complicated which was affected by properties of fiber, resin and interface. Fragmentation test showed biggest interface shear stress achieved 17.2 MPa, which represented a 54.0% increase over untreated fiber reinforced composites.  相似文献   

3.
S. Eibl  D. Swanson 《火与材料》2018,42(2):234-243
This work investigates the influence of the out‐of‐plane orientation of carbon fibers on the reaction‐to‐fire characteristics of polymer matrix composites. A deep insight into combustion processes is gained, which is necessary to fully understand and assess advantages of composites with out‐of‐plane fiber angles. Epoxy‐based Hexply 8552/IM7 specimens with primarily low fiber angles between 0° and 15° are characterized by cone calorimetry. Heat release during fire is greatly affected by the out‐of‐plane fiber angle because of the thermal boundaries created by the fibers. The advancement of the pyrolysis front during fire was determined from peak heat release rates and validated by temperature measurements along the back surface of the panels, representing a novel method of determining position‐dependent pyrolysis migration velocity. These measurements show a transverse shift in pyrolysis front velocity for increasing out‐of‐plane fiber angles. Pyrolysis pathways between the fiber boundaries facilitate faster combustion through the composite thickness, especially for increasing angles from 0° to 15°. It was determined that under the chosen conditions, the pyrolysis front advances approximately 4 times faster when propagating parallel to the fibers than perpendicular.  相似文献   

4.
The aim of this study is to develop a light weight hybrid biocomposite using pineapple and Kevlar fiber with peanut husk cellulose in vinyl ester resin for applications in unmanned aerial vehicles. This study focuses on how the silane treatment on fiber and cellulose particle influences the mechanical, fatigue and low velocity impact properties of this hybrid biocomposites. Using hand lay-up technique, the biocomposite was prepared with cellulose loading ranging from 1 to 5 vol%. The results revealed that the 5 vol% of cellulose added composite had an improved tensile, impact, flexural, hardness and ILSS of 161 MPa, 224 MPa, 6.8 J, 84 shore-D and 21.4 MPa. Moreover, the biocomposite with the inclusion of 3 vol% cellulose had an improved fatigue life count of 42 697, 29 821, 22 381 and 18 164 at 25%, 50%, 75% and 90% of UTS. Similarly, the 3 vol% cellulose reinforced composite showed an improved low velocity impact toughness of 12.36 J. The obtained results clearly indicated that these mechanically strengthened and highly toughened biocomposites could be used as working material for number of applications, especially in making of UAVs for the aerospace industry, automotive components for the transportation sector and structural material in domestic infrastructure.  相似文献   

5.
The adhesion of bisphenol-A polycarbonate, an amorphous thermoplastic, to carbon fiber was studied by varying both the intrinsic and the extrinsic properties such as the molecular weight, processing conditions, and test temperature. It was seen that processing methods and conditions had a significant effect on adhesion as measured by the interfacial shear strength. Commercial grade Lexan 141 solvent deposited onto carbon fibers showed poor adhesion when processed below the glass transition temperature and reached a limiting value at a higher temperature. Melt consolidated pure polycarbonate specimens showed increases in adhesion both with increasing processing temperature and with time. Pure polycarbonate having a molecular weight above the critical molecular weight exhibited a higher adhesion at different processing conditions, while for polycarbonate below the critical molecular weight adhesion was poor and unaffected by the processing temperature. Increases in temperature lowered the adhesion as a result of the dependence of adhesion on the matrix modulus, which decreases with increasing temperature.  相似文献   

6.
在土木工程中,混凝土结构的加固补强要求连续纤维增强树脂基复合材料应具有较高的抗拉强度、弹性模量和一定的断裂延伸率,本文探讨了在一定成型工艺和环氧树脂基体的条件下,影响这些性能的因素.试验表明,纤维品种、纤维表面处理方法、片材厚度对这些性能有显著的影响;纤维束或纤维布与树脂基体复合固化后,由于固化应力的作用,其增强效率将大大下降。对此,在加固设计时应予以重视。  相似文献   

7.
Interfacial adhesion between carbon fiber and epoxy resin plays an important role in determining performance of carbon–epoxy composites. The objective of this research is to determine the effect of fiber surface treatment (oxidization in air) on the mechanical properties (flexural strength and modulus, shear and impact strengths) of three‐dimensionally (3D) braided carbon‐fiber‐reinforced epoxy (C3D/EP) composites. Carbon fibers were air‐treated under various conditions to improve fiber–matrix adhesion. It is found that excessive oxidation will cause formation of micropits. These micropits are preferably formed in crevices of fiber surfaces. The micropits formed on fiber surfaces produce strengthened fiber–matrix bond, but cause great loss of fiber strength and is probably harmful to the overall performance of the corresponding composites. A trade‐off between the fiber–matrix bond and fiber strength loss should be considered. The effectiveness of fiber surface treatment on performance improvement of the C3D/EP composites was compared with that of the unidirectional carbon fiber–epoxy composites. In addition, the effects of fiber volume fraction (Vf) and braiding angle on relative performance improvements were determined. Results reveal obvious effects of Vf and braiding angle. A mechanism was proposed to explain the experimental phenomena. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1040–1046, 2002  相似文献   

8.
Sn‐doped CdS/TiO2 heterojunction was synthesized on the conducting polymer fiber mat by hydrothermal method. The conducting polymer fiber mat was made by electrospinning from polyvinylidene fluoride, styrene‐maleic anhydride copolymer, and nano‐graphites as conducting fillers. The Sn‐doped CdS/TiO2 heterojunction was characterized by XRD, XPS, SEM, TEM, TGA, and UV–Vis absorption spectra. Under simulated solar light irradiation, a combination of Sn‐doped CdS/TiO2/conducting polymer was found to be highly efficient for photocatalytic hydrogen evolution from splitting of water. The photocatalytic hydrogen production efficiency was up to 2885 μmol h?1 g?1cat. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42300.  相似文献   

9.
The first of this two‐article study showed that the addition of antioxidants can significantly improve the thermo‐oxidative resistance of bamboo fiber reinforced polypropylene composites (BFPCs). In this article, the effect of antioxidants on water absorption, thermal stability, crystallinity, and the dynamic mechanical properties of the composites were investigated. The results showed that the addition of antioxidants resulted in a slight increase in water absorption, but this increase can be reduced by controlling the ratio of the primary and secondary antioxidants. The glass transition temperature (Tg) of composites also slightly increased. However, the effects of antioxidants on the crystallinity as well as other thermal properties of BFPCs were small or even insignificant. The different combinations, ratios, and the adding amounts of antioxidants show tiny differences for all these properties. As a whole, the addition of minor antioxidants in the bamboo fiber (BF) polymer composites will not produce obvious negative effects on their overall performances. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44199.  相似文献   

10.
《Ceramics International》2021,47(24):33956-33971
Ablative composites have been in use for thermal protection of space vehicles for decades. Carbon-phenolic composites have proven to perform exceptionally well in these applications. However with development in aerospace industry their performance needs improvement. In this field, different carbon-based and ceramic additives have been introduced into ablative composite systems. This review article gives a comparative analysis of researches done in this field in the recent past. Density, ablative, thermal and mechanical properties of ablative composites with different ultra-high temperature ceramic particles i.e. ZrSi2, Cenosphere, nano-SiO2, BN etc. and carbon-based nanoparticles i.e. CNTs, nano-Diamonds, Graphene oxide etc. used as additives, have been compared and discussed. Emphasis is put on carbon-phenolic composite systems although some epoxy matrix systems have also been discussed for comparison.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号