首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two-dimensional Zn-based metal-organic framework has been synthesized by using Zn(II) ions and H2SDC (4,4′-stilbenedicarboxylic acid) under solvothermal conditions. The framework having a trinuclear Zn3-(RCO2)6 SBUs connected by the 4,4′-stilbenedicarboxylic acid to form a hexagonal network, shows a two-dimensional structure and displays high thermal stability up to approximately 330 °C. The role of Zn2+ (from Zn-SDC) for epoxide activation and Br-ion (from TBABr) for ring opening of epoxide was studied for the cycloaddition reaction of CO2 and propylene oxide (PO) under ambient conditions. Zn-SDC was found catalytically efficient towards CO2-epoxide coupling under ambient reaction conditions with high selectivity towards the desired cyclic carbonates under solvent-free conditions. The effects of various reaction parameters such as catalyst loading, temperature, CO2 pressure, and time were evaluated. Zn-SDC was easily separable and reusable at least five times without any considerable loss in the initial activity. A plausible reaction mechanism for the cycloaddition reaction was also proposed based on literature and experimental inferences.  相似文献   

2.
Glycerolysis of soybean oil was conducted in a supercritical carbon dioxide (SC-CO2) atmosphere to produce monoglycerides (MG) in a stirred autoclave at 150–250°C, over a pressure range of 20.7–62.1 MPa, at glycerol/oil molar ratios between 15–25, and water concentrations of 0–8% (wt% of glycerol). MG, di-, triglyceride, and free fatty acid (FFA) composition of the reaction mixture as a function of time was analyzed by supercritical fluid chromatography. Glycerolysis did not occur at 150°C but proceeded to a limited extent at 200°C within 4 h reaction time; however, it did proceed rapidly at 250°C. At 250°C, MG formation decreased significantly (P<0.05) with pressure and increased with glycerol/oil ratio and water concentration. A maximum MG content of 49.2% was achieved at 250°C, 20.7 MPa, a glycerol/oil ratio of 25 and 4% water after 4 h. These conditions also resulted in the formation of 14% FFA. Conversions of other oils (peanut, corn, canola, and cottonseed) were also attempted. Soybean and cottonseed oil yielded the highest and lowest conversion to MG, respectively. Conducting this industrially important reaction in SC-CO2 atmosphere offered numerous advantages, compared to conventional alkalicatalyzed glycerolysis, including elimination of the alkali catalyst, production of a lighter color and less odor, and ease of separation of the CO2 from the reaction products.  相似文献   

3.
Two highly stable isoreticular metal-organic frameworks comprising chains of zirconium coordinated with linkers of 1,4-H2BDC (1,4-benzenedicarboxylic acid) and 4,4′-H2BPDC (4,4′-biphenyldicarboxylic acid), denoted as MIL-140A and MIL-140C, were synthesized. The catalytic activity of these frameworks was studied for the coupling reaction of CO2 and epoxides to produce cyclic carbonates under solvent-free conditions. Excellent activity was observed for both catalysts: they yielded high epoxide conversion with >99% selectivity toward the cyclic carbonate, and were fully reusable even after four cycles without any considerable loss of initial activity. The enhancement in the catalytic activity was explained based on acidity/basicity studies. The influence of various reaction parameters such as catalyst amount, reaction time, reaction temperature, and CO2 pressure was also investigated. Reaction mechanism was proposed on the basis of experimental evidence and our previous DFT (density functional theory) studies.  相似文献   

4.
This study describes the production of a membrane by blending polyvinyl alcohol (PVA) and water-absorbing agents for the selective permeation of CO2 by optimizing the type of water-absorbing agent and its ratio to PVA. A CO2-facilitated transport membrane is prepared by adding an aqueous cesium carbonate solution to a coated polymer blend matrix. When sodium polyacrylate (PAANa) is blended with PVA as a water-absorbing agent, the resulting membrane shows promising heat and pressure resistances and a relatively high CO2/He separation performance. Particularly, the CO2/He selectivity of the membrane composed of PVA, PAANa, and another water-absorbing agent exceeds 400 under a total pressure of 0.1 MPa and a CO2 partial pressure of 0.08 MPa at 85°C. Moreover, the CO2/He selectivity is approximately 100 even under a total pressure of 0.7 MPa and a CO2 partial pressure of 0.56 MPa. Thus, a high-performance CO2 separation membrane at 85°C is produced.  相似文献   

5.
Lipase-catalyzed hydrolysis of canola oil in supercritical carbon dioxide   总被引:4,自引:0,他引:4  
The effect of pressure, temperature, and CO2 flow rale on the extent of conversion and the product composition in the enzyme-catalyzed hydrolysis of canola oil in supercritical carbon dioxide (SCCO2) was investigated using lipase from Mucor miehei immobilized on macroporous anionic resin (Lipozyme IM). Reactions were carried out in a continuous flow reactor at 10, 24, and 38 MPa and 35 and 55°C. Supercritical fluid chromatography was used to analyze the reaction products. A conversion of 63–67% (triglyceride disappearance) was obtained at 24–38 MPa. Mono-and diglyceride production was minimum at 10 MPa and 35°C. Monoglyceride production was favored at 24 MPa. The amount of product obtained was higher at 24–38 MPa due to enhanced solubility in SCCO2. Complete hydrolysis of oil should be possible by increasing the enzyme load and/or decreasing the quantity of the oil substrate. There was a drop in triglyceride conversion over a 24-h reaction time at 38 MPa and 55°C, which may be an indication of loss of enzyme activity. Pressure, temperature, and CO2 flow rate are important parameters to be optimized in the enzyme-catalyzed hydrolysis of canola oil in SCCO2 to maximize its conversion to high-value products.  相似文献   

6.
The solubility of CO2 in native potato starch (NPS) and potato starch acetate (SA) at two different temperatures (50°C and 120°C) and various pressures (up to 25 MPa) was determined using a magnetic suspension balance. Within the experimental window, a maximum solubility of 31 mg CO2/gsample for NPS and 79.4 mg CO2/gsample for SA was obtained. The CO2 sorption behavior is highly depending on the temperature and pressure. The solubility data were modeled with the Sanchez Lacombe equation of state (S‐L EOS). The swelling (Sw) values, as predicted using the S‐L EOS, were relatively small and a maximum value of 6.1% was obtained for SA at 25 MPa and 120°C. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

7.
This study investigated the effect of annealing time and temperature on gas separation performance of mixed matrix membranes (MMMs) prepared from polyethersulfone (PES), SAPO‐34, and 2‐hydroxy 5‐methyl aniline (HMA). A postannealing period at 120°C for a week extensively increased the reproducibility and stability of MMMs, but for pure PES membranes no post‐annealing was necessary for stable and reproducible performance. The effect of operation temperature was also investigated. The permeabilities of H2, CO2, and CH4 increased with increasing permeation temperature from 35°C to 120°C, yet CO2/CH4 and H2/CH4 selectivities decreased. PES/SAPO‐34/HMA ternary and PES/SAPO‐34 binary MMMs exhibited the highest ideal selectivity and permeability values at all temperatures, respectively. For H2/CO2 pair, when temperature increased from 35°C to 120°C, selectivity increased from 3.2 to 4.6 and H2 permeability increased from 8 to 26.5 Barrer for ternary MMM, demonstrating the advantage of using this membrane at high temperatures. The activation energies were in the order of CH4 > H2 > CO2 for all membranes. PES/SAPO‐34/HMA membrane had activation energies higher than that of PES/SAPO‐34 membrane, suggesting that HMA acts as a compatibilizer between the two phases. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40679.  相似文献   

8.
In this work, ether oxide (EO)-based multilayer composite membranes were prepared via interfacial polymerization (IP) of trimesoyl chloride (TMC) and polyetheramine (PEA) on polydimethylsiloxane precoated polysulfone support membrane. The effects of preparation parameters, such as monomer concentrations, reaction time, and heat-treatment temperature on the membrane performance were investigated. The optimal preparation parameters have been concluded. The results showed the increasing monomers concentration of both PEA and TMC can lead to the decrease of CO2 permeance and increase of CO2/N2 selectivity. The optimal monomers concentration was found. When monomer concentrations are higher than the optimal values, the CO2 permeance decreases continually while CO2/N2 selectivity only shows a very limited improvement with the further increase of monomers concentration. The reaction time has similar effects on membrane performance as the monomers concentration. The effect of heat-treatment temperature was also studied. With the increasing heat-treatment temperature, the CO2 permeance shows a decrease tendency, while the CO2/N2 selectivity shows a maximum at 80 °C. When PEA is 0.013 mol L−1, TMC is 0.020 mol L−1, reaction time is 3 min, and heat-treatment temperature is 80 °C, the optimum preparation conditions are achieved with CO2 permeance of 378.3 gas permeation unit (GPU) and CO2/N2 selectivity of 51.7 at 0.03 MPa. This work may help to design and fabricate gas separation membranes with desired performance. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47755.  相似文献   

9.
In this article, a novel two step synthesis of soy oil based isothiocyanate is described. Allylicaly brominated soybean oil (ABSO) was reacted first with ammonium thiocyanate in tetrahydro furan to form allylic thiocyanates. These compounds were then converted to isothiocyanated soybean oil (ITSO) by a thermal rearrangement. Conversion was found to be 70%. The structure of the ITSO was characterized by IR and 1 H‐NMR techniques. Then ITSO was reacted with ethylene glycol, glycerol, and castor oil to produce polythiourethanes and ethylene diamine and triethylene tetra amine to produce polythioureas. Thermal properties of the products were determined by DSC and TGA techniques. DSC traces showed Tg's for ethylene glycol polythiourethane at ?39 and 58°C, for glycerol polythiourethane at ?39 and 126°C, for castor oil polythiourethane at ?38°C and ?17°C, for ethylene diamine polythiourea at ?45°C, and for triethylene tetra amine poly thiourea at ?39°C. Additionally, DSC analysis of polythioureas showed an endotherm at around 100°C. All of the polymers started to decompose around 200°C. Tensile properties of the polymers were determined. Polythiourethanes showed higher tensile strength and lower elongation when compared with their urea analogs. Stress at break values of the polymers were 1.2 MPa for glycerol polythiourethane, 0.6 MPa for ethylene glycol polythiourethane, 0.5 MPa for ethylene diamine polythiourea, and 0.9 MPa for triethylene tetra amine polythiourea polymers. Unfortunately, polymers synthesized showed poor solvent resistance. All polymers swelled and disintegrated in CH2Cl2 in 5 h. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
Using a SiO2 supported copper and H4SiW12O40 catalyst, it is demonstrated that glycerol can be directly converted to 1,3-Propanediol (1,3-PD) through vapor-phase process under pressure below 0.54 MPa, without employing environmentally harmful organic solvent. The formation of 1,3-PD is proved to proceed through the designed reaction pathway: (step 1) dehydration of glycerol to 3-hydroxypropanal on acid site of supported H4SiW12O40 (step 2) hydrogenation of 3-hydroxypropanal on supported copper metal. The effect of temperature, weight hourly space velocity, pressure, and initial water content was investigated to obtain the optimum conditions. The glycerol conversion and products distribution greatly depended on these factors. Both the 1,3-PD and 1,2-Propanediol selectivity improved with increasing hydrogen pressure. At 210 °C, 0.54 MPa and 83.4% conversion, the selectivity of 1,3-PD was up to 32.1%, together with a 22.2% selectivity of 1,2-Propanediol. The cyclic acetal, an important kind of byproducts, was identified by Gas Chromatogram–Mass Spectrometer (GC–MS).  相似文献   

11.
Non-noble metal Ni/NaX catalyst was prepared and used in the hydrogenolysis of aqueous glycerol. Characterization by XRD, SAED, H2 chemisorption, ICP and NH3-TPD techniques disclosed that the proper strong acid sites were responsible for the high activity and selectivity. Over Ni/NaX catalyst, conversion of glycerol reached 86.6% with 94.6% selectivity to glycols including 1,2-proplyene glycol and ethylene glycol under 6.0 MPa H2 pressure at 200 °C after 10 h reaction. Additionally, the effects of time, temperature, and H2 pressure were investigated in detail.  相似文献   

12.
The deacidification of high-acidity oils from Black cumin seeds (Nigella sativa) was investigated with supercritical carbon dioxide at two temperatures (40 and 60°C), pressures (15 and 20 MPa) and polarities (pure CO2 and CO2/10% MeOH). For pure CO2 at a relatively low pressure (15 MPa) and relatively high temperature (60°C), the deacidification of a highacidity (37.7 wt% free fatty acid) oil to a low-acidity (7.8 wt% free fatty acid) oil was achieved. The free fatty acids were quantitatively (90 wt%) extracted from the oil and left the majority (77 wt%) of the valuable neutral oils in the seed to be recovered at a later stage by using a higher extraction pressure. By reducing the extraction temperature to 40°C, increasing the extraction pressure to 20 MPa, or increasing the polarity of the supercritical fluid via the addition of a methanol modifier, the selectivity of the extraction was significantly reduced; the amount of neutral oil that co-extracted with the free fatty acids was increased from 23 to 94 wt%.  相似文献   

13.
Carbonated soybean oil was synthesized from epoxidized soybean oil and CO2 at atmospheric pressure and with tetrabutylammonium bromide (TBABr) as catalyst. Kinetic parameters, i.e., rate constants, activation energy and pre-exponential factors were determined. The effects of catalyst concentration and water content were studied. The reaction followed first-order kinetics with respect to epoxide at 100–140 °C. A steep increase in conversion (ca. 30 %) was obtained by increasing the amount of catalyst from 3 to 5 %. Further increasing the amount of catalyst to 7 % increased the conversion less than 10 %. The reaction proceeded faster when water was added; reaction times with water were ca. 70 % of the reaction times without water. Titration, FTIR and 1H-NMR analyses indicated ca. 90 % conversion and ca. 88 % selectivity towards the carbonate after 70 h at 120 °C with 5 % mol TBABr and 1:3 molar ratio of water to epoxide.  相似文献   

14.
Phase equilibrium experimental data for the CO2/glycerol system are reported in this paper. The measurements were performed using an in situ FT-IR method for temperatures ranging from 40 °C to 200 °C and pressures up to 35.0 MPa, allowing determination of the mutual solubility of both compounds. Concerning the CO2 rich phase, it was observed that the glycerol solubility in CO2 was extremely low (in the range of 10−5 in mole fraction) in the pressure and temperature domains investigated here. Conversely, the glycerol rich phase dissolved CO2 at mole fractions up to 0.13. Negligible swelling of the glycerol rich phase has been observed. Modeling of the phase equilibrium has been performed using the Peng–Robinson equation of state (PR EoS) with classical van der Waals one fluid and EoS/GE based mixing rules (PSRK and MHV2). Satisfactory agreement was observed between modeling results and experimental measurements when PSRK mixing rules are used in combination with UNIQUAC model, although UNIFAC predictive approach gives unsatisfactory representation of experimental behavior.  相似文献   

15.
Carbonated soybean oil (CSO) containing five‐membered cyclic carbonate groups has been obtained in the reaction of epoxidized soybean oil with carbon dioxide in the presence of KI activated by 18‐crown‐6 under 6 MPa CO2 pressure at 130°C. The CSO was used for modification of bisphenol‐A based epoxy resin. The composition epoxide‐cyclic carbonate was cured using polyamine hardeners by one‐step and two‐step procedures. All cured compositions were characterized for their thermal and mechanical properties and compared with the parent epoxy network. The optimal properties were obtained for compositions containing CSO and cured by one‐step method when phase separation takes place. The mechanical properties were discussed in terms of morphology observed by SEM. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2904‐2914, 2006  相似文献   

16.
Epoxidation of Nahor oil was performed by H2O2 in the presence of acid catalyst at 50 °C. It was possible to obtain around 70% epoxide yield within 8 hrs of reaction. Amberlite IR 120H showed better epoxide yield compared to H2SO4 and Dowex 50 WX8. The performance of carboxylic acids was found to be in the order of formic acid>acetic acid>propanoic acid. The curing of epoxidized nahor oil involved using ethylenediamine (EDA) and diethylenetriamine (DETA). The adhesive property of the cured resins was tested and compared with commercially available glue. The force required to detach the cardboard joint was about 36.3 N for DETA-cured resin.  相似文献   

17.
The syntheses of carbon dioxide (CO2) based industrially important chemicals have gained considerable interest in view of the sustainable chemistry and “green chemistry” concepts. In this review, recent developments in the chemical fixation of CO2 to valuable chemicals are discussed. The synthesis of five-member cyclic carbonates via, cycloaddition of CO2 to epoxides is one of the promising reactions replacing the existing poisonous phosgene-based synthetic route. This review focuses on the synthesis of cyclic carbonates, vinyl carbamates, and quinazoline-2,4(1H,3H)-diones via reaction of CO2 and epoxide, amines/phenyl acetylene, 2-aminobenzinitrile and other chemicals. Direct synthesis of dimethyl carbonate, 1,3-disubstituted urea and 2-oxazolidinones/2-imidazolidinones have limitations at present because of the reaction equilibrium and chemical inertness of CO2. The preferred alternatives for their synthesis like transesterification of ethylene carbonate with methanol, transamination of ethylene carbonate with primary amine and transamination reaction of ethylene carbonate with diamines/β-aminoalcohols are discussed. These methodologies offer marked improvements for greener chemical fixation of CO2 in to industrially important chemicals.  相似文献   

18.
Transient kinetics of ethylene epoxidation over a Ag/SiO2 catalyst has been studied at relatively low temperatures (110-130‡C) using an automated square pulse cyclic reactor. It is observed at this low temperatures that the formation of CO2 and H2O was retarded compared to epoxide formation. The 100% selectivity toward ethylene oxide was obtained after hydrogen treatment of the catalyst surface. It indicates that maximum selectivity of 6/7 based on classical molecular oxygen hypothesis should be carefully reviewed. The participation of both atomic and molecular oxygen to epoxide formation was posiulated, but the former probably after recombination with subsurface oxygen.  相似文献   

19.
CO2 has a large effect on global warming by greenhouse gases, and development of an effective technique for the reduction of CO2 is a crucial and urgent issue. From the chemical viewpoint, CO2 is regarded as a stable, safe and abundant C1 resource, and the transformation of CO2 to valuable chemicals is promising not only for reduction of CO2 but also for production of useful chemicals. This mini‐review focuses on the direct conversion of CO2 with diols, aminoalcohols and diamines to cyclic compounds such as cyclic carbonates, cyclic carbamates and cyclic ureas, and in particular discusses the mechanisms for these reactions over heterogeneous catalysts. © 2013 Society of Chemical Industry  相似文献   

20.
Organic carbonates are green compounds with a wide range of applications. They are widely used for the synthesis of important industrial compounds including monomers, polymers, surfactants, plasticizers, and also used as fuel additives. They can be divided into two main classes: cyclic and linear carbonates. Dimethyl carbonate (DMC) and diethyl carbonate (DEC) are the important linear carbonates. Carbonyl and alkyl groups present in DMC and DEC make them reactive and versatile for synthesizing various other important compounds. Ethylene carbonate (EC), glycerol carbonate (GC) and propylene carbonate (PC) are well-known cyclic organic carbonates. Phosgenation of alcohols was widely used for synthesis of organic carbonates; however, toxicity of raw materials restricted use of phosgenation method. A number of new non-phosgene methods including alcoholysis of urea, carbonylation of alcohols using CO2, oxy-carbonylation of alcohols, and trans-esterfication of alcohols and carbonates have been developed for synthesizing organic carbonates. Carbonylation of alcohols is preferred as it helps in utilization and sequestration of CO2, however, poor thermodynamics due to high stability of CO2 is the major obstacle in its large scale commercialization. Oxy-carbonylation of alcohols offers high selectivity but presence of oxygen poisons the catalyst. Recently, alcoholysis of urea has received more attention because of its inexpensive abundant raw materials, favorable thermodynamics, and no water-alcohol azeotrope formation. Also, ammonia evolved in this synthesis route can be recycled back to urea by reacting it with CO2. In other words, this method is a step towards utilization of CO2 as well. This article reviews synthesis of DMC, DEC, GC, PC, and EC from urea by critically examining various catalysts used and their performances. Mechanisms have been reviewed in order to give an insight of the synthesis routes. Research challenges along with future perspectives have also been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号