首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Piezoelectric and transient differential pressure sensors are two among the most widely employed sensors for vortex flowmeter application. The present study evaluates the performance of these two techniques under fully developed and disturbed flow conditions. Firstly, the location of the transient differential pressure sensor is optimized to obtain high amplitude signals and good linearity in Strouhal number. Empirical mode decomposition method in combination with autocorrelation decay is successfully employed at high Reynolds numbers to identify the vortex shedding frequency in presence of hydrodynamic noise. The performance of the differential pressure sensor deteriorates significantly under disturbed flow conditions at low Reynolds number due to the presence of low frequency components. This deterioration in the signal quality limits the lower operating range of the flowmeter with differential pressure sensor. The output signals of the piezoelectric sensor and differential pressure sensor under no flow condition are compared to obtain the background noise due to piping vibrations and electrical interferences. These results will help a designer to suggest robust signal processing algorithms for vortex frequency detection.  相似文献   

2.
涡街流量计是最近发展起来的一种新型流量计,其传感器输出信号的频率与流体的流速成正比,经过计算可以测量积流量。由于管道的机械振动和流场的不稳定等因素,使得传感器输出信号中含有各种噪声,本文归纳了几种通过数字信号处理测量频率的方法,其中小波变换方法具有较好的应用前景。  相似文献   

3.
Some digital signal processing methods have been used to deal with the output signal of vortex flowmeter for extracting the flow rate frequency from the noisy output of vortex flow rate sensor and achieving the measurement of small flow rate. In applications, however, the power of noise is larger than that of flow rate sometimes. These strong disturbances are caused by pipe vibration mostly. Under this condition the previous digital signal processing methods will be unavailable. Therefore, an anti-strong-disturbance solution is studied for the vortex flowmeter with two sensors in this Note. In this solution, two piezoelectric sensors are installed in the vortex probe. One is called the flow rate sensor for measuring both the flow rate and vibration noise, and the other is called the vibration sensor for detecting the vibration noise and sensing the flow rate signal weakly at the same time. An anti-strong-disturbance signal processing method combining the frequency-domain substation algorithm with the frequency-variance calculation algorithm is proposed to identify the flow rate frequency. When the peak number of amplitude spectrum of the flow rate sensor is different from that of the vibration sensor, the frequency-domain subtraction algorithm will be adopted; when the peak number of amplitude spectrum of the flow rate sensor is the same as that of the vibration sensor, the frequency-variance calculation algorithm will be employed. The whole algorithm is implemented in real time by an ultralow power micro control unit (MCU) to meet requirements of process instrumentation. The experimental results show that this method can obtain the flow rate frequency correctly even if the power of the pipe vibration noise is larger than that of the vortex flow rate signal.  相似文献   

4.
In a vortex flowmeter vortices are generated by a bluff body, inserted in the path of flow, which has a piezoelectric sensor embedded in it. This piezosensor develops a signal having a fundamental frequency that is proportional to flow. The flow measurement relies completely on extraction of true vortex signal and estimation of the correct frequency. A novel adaptive FIR filter has been designed and implemented using low power computational resource (8.25 mW), which gives better results than an existing contemporary system when tested on an industrial flow rig. Further more a comparative study of autocorrelation, EMD Scales filter and proposed algorithm is carried on the good and bad vortex signals. From this comparative study it is seen that proposed algorithm is effective for bad vortex signals and low flowrates where vortex signals are weak.  相似文献   

5.
提出了一种压电式力传感器低频响应特性的补偿方法,该方法是在频域上完成的。首先,对压电式力传感器的输出信号进行后处理,将输出信号与补偿函数相乘即可获得补偿后的输出信号,其中,补偿函数是压电式力传感器放电时间常数的函数;然后,以P5H压电陶瓷片为例,分别对其施加已知的阶跃外力和低频简谐外力,并分别将补偿前后的测试结果与已知外力进行对比,从而实现对该方法的实验验证。验证结果表明:该方法可以对压电式力传感器的低频响应特性进行有效的补偿。  相似文献   

6.
涡街流量计众多的优点使其跻身通用流量计之一,但是当流速较低时,会存在测量不稳定的缺点。针对涡街流量传感器的非线性特性,本系统采用16位微处理器M SP430F435为核心,将传感器特性曲线存储在F lash存储器中,实现了对涡街传感器的非线性校正,从而扩大了涡街流量计的使用范围。同时该仪表还具有频率输出、4—20m A电流输出以及R S485通信功能,便于和传统仪表兼容。  相似文献   

7.
近年来涡街流量计的应用越来越广泛,但在实际使用时管道振动和流场扰动等引起的噪声易对涡街信号造成干扰,导致实际测量精度达不到要求。本文使用小波变换及FFT算法对涡街信号进行处理。该方法对涡街信号提取和去除噪声效果良好。有利于扩大涡街流量计的量程范围,提高测量精度。  相似文献   

8.
土木工程结构中有很多方形断面的细长结构,常常受到斜向风作用,其风荷载可以简化为斜置方柱的气动力,与垂直风向作用不同,目前尚没有明确的气动力估算方法。针对此问题,采用刚性节段模型测压风洞试验,分析了风偏角对方柱的静态气动力特性的影响规律。结果表明:采用传统风速分解法仅可以有效地估计在分离点之前的风压,并不适用于斜置方柱完整气动力的估算;由于背风面风压的减弱,斜置方柱的平均和脉动气动力系数小于垂直方柱的对应值;斜置方柱的旋涡脱落频率小,强度弱,频带宽。因此,采用垂直方柱的平均气动力作为方柱抗风设计的平均风荷载是偏于安全的,但是由于旋涡脱落频率及带宽的变化,斜置方柱的风致振动与垂直方柱会有明显的差别。  相似文献   

9.
The development and use of a system to measure important parameters of the vortex field in a coordinate grid around several single bluff bodies and dual bluff body combinations are described. Two hot wire sensors were used: a reference sensor at a fixed position and a moving sensor with position coordinates adjusted by using computer control. The strength, frequency and regularity of the vortex shedding are found from the auto-power spectral density of the moving sensor signal. The phase difference between moving and reference sensor signals is found from the cross-power spectral density function between the signals. The results are presented as maps of vortex parameters plotted as a function of sensor position coordinates. The main features of these maps, including the enhancement of vortex shedding from certain dual bluff body combinations, is then discussed.  相似文献   

10.
This investigation elucidates the effects of Reynolds number (Re) and angle of attack (??) on the boundary-layer flow patterns, aerodynamic performance, flow behaviors and vortex shedding. This investigation applies a finite NACA 0012 forward-swept wing with the forward-sweep angle (??) of 15°. The Reynolds numbers were tested in the range of 4.6 × 104 < Re < 105. The wing chord length is 6 cm and the semi-wing span is 30 cm, such that the full-span wing aspect ratio is 10. The surface oil-flow scheme was utilized to visualize the boundary-layer flow structures. The hot-wire anemometer was applied to measure the vortex-shedding frequency behind the forwardswept wing. Furthermore, a force-moment sensor was applied to measure the aerodynamic loadings. The surface oil-flow patterns are classified into six characteristic flow modes ?? separation, separation bubble, secondary separation, leading-edge bubble, bubble extension and bluff-body wake modes. Additionally, the output of force-moment sensor and the visualized boundary-layer flow configurations indicate that the aerodynamic performance is closely related to the boundary-layer flow behaviors. Furthermore, the boundary-layer flow stalled in the leading-edge bubble mode. Moreover, the vortex-shedding frequency behind the forward-swept wing shows that the vortexshedding frequency at low ?? exceeds that at high ??.  相似文献   

11.
Ultrasound is widely used and studied to satisfy the increased demands of the Non-destructive evaluation (NDE) and testing of underwater structures. However, because of the large size and mass of underwater structures, such as submarines, ship hulls, or nuclear reactor pipe lines, it is difficult to inspect the structures during operation. This underwater NDE technology is challenging but could be highly beneficial because the time and cost of maintenance will be effectively reduced. We propose an NDE method for immersed structures using an ultrasonic propagation imaging system with a piezoelectric sensor. The underwater sensing capability of a piezoelectric sensor is experimentally demonstrated using an aluminum plate specimen. A piezoelectric sensor can compensate for the decreased signal amplitudes due to leaky waves that are generated on interfaces between structures and water, since water transmits signals better than air. Additionally, a piezoelectric sensor can be applied even if the water surface is oscillating. Using these properties, the laser induced guided Ultrasonic propagation imager (UPI) inspected a T-shaped steel structure with a 2-mm crack on the weld zone. The inspection was implemented in three cases: a specimen without water, a specimen immersed in water and a specimen immersed in water with a randomly oscillating surface. The crack was visualized and measured using the ultrasonic wave propagation imaging algorithm, the adjacent wave subtraction algorithm, and the variable time window amplitude mapping algorithm. In the case with a randomly oscillating water surface, the laser pulse was refracted randomly based on Snell’s law. This phenomenon may cause degradation of the inspecting results. However, a repeated scanning process and outlier elimination led to an improved signal-to-noise ratio such that it was able to detect the crack. These results demonstrate the possibility to apply the laser UPI to submerged structures even if the water surface is randomly oscillating.  相似文献   

12.
Due to their low mass and conformability, actuators and sensors made of active materials can be used in the vibration control of inflatable structures. In this study, we model piezoelectric patches attached to an inflated toroidal shell as actuators and sensors. Using Sanders' shell theory in the presence of initial stresses, the generalised forces due to the piezoelectric actuators are derived for the inflated toroidal shell assuming quasi-static conditions. The derivations are given for both unimorph and bimorph configurations. Effects of the mass and stiffness of the patches are incorporated in the equations of motion. Thereafter, a sensor equation is presented. Within linear shell theory, the methodology is quite general in nature and can be applied easily to other types of shells and membranes. To demonstrate this, we specialise the actuator and sensor equations for a circular cylinder. Using the formulations for the inflated toroidal shell, the modal forces and modal sensing constants are calculated for different sizes and locations of the piezoelectric patches. Along with this, controllability and observability indices are calculated to quantify the performance of the actuators and sensors. A study of the stiffness and mass effects of the piezoelectric patches is performed using frequency response function.  相似文献   

13.
管道是油气资源运输的载体,其性能对作业安全影响巨大。在合理假设的基础上,通过建立悬跨管道的振动力学模型,建立并求解其运动微分方程,得到悬跨管道的纵向振动响应。管道在受冲击载荷作用时由于阻尼的存在其纵向振动响应幅值随时间逐渐减小;管道受一般外载作用下的响应可通过将外载视为作用时间段内冲击载荷的积分来处理;管道受简谐力作用时其振动幅度与阻尼比和频率比相关,当外激频率接近固有频率时振幅放大系数最大,当外激频率大于固有频率时,频率比越大管道的振幅放大系数越小。  相似文献   

14.
谐振式MEMS温度传感器设计   总被引:4,自引:2,他引:2  
为了实现以频率输出为信号的气象温度测量,提出了一种基于双层悬臂梁的谐振式微温度传感器。基于双悬臂梁不同材料热膨胀系数的差异会导致悬臂梁谐振频率偏移的原理,采用压电方式同时实现悬臂梁的驱动及其谐振频率的检测,从而实现温度的测量。根据硅基传感器的正面腐蚀工艺,设计了谐振悬臂梁的双层结构,采用有限元方法分析了悬臂梁的谐振模态、可利用的振型及其温度与各模态谐振频率的关系,并利用多普勒振动系统对悬臂梁的谐振特性进行了研究。实验发现悬臂梁的二阶弯曲振型Q值相对于其它振型是最大的,其Q值约为150;高阶振型特别是二阶弯曲振型适合用于以ZnO为压电材料的温度传感器的频率检测,并且具有相对较高的灵敏度(约为20Hz/℃)和频率温度系数(1.9×10-4/℃)。结果表明,微型温度传感器能够满足气象温度检测的要求,并具有抗干扰能力强、灵敏度高、信号传输接口简单等优点。  相似文献   

15.
Conical shells are widely used as payload/rocket adapters in rocket fairing systems. Generally, the conical shells are clamped at the major end and free at the minor end, where the payload is mounted. This study focuses on the dynamic sensing of conical shells with fix-free boundary conditions (BCs) by using distributed piezoelectric helical sensors. Two types of motion are studied, i.e., the transverse modes and the torsion modes. The shear-type sensors for shells sensing are presented first. Formulations of sensing signals of a general shell of revolution are presented, and then simplified to conical shells. For sensing of transverse vibrations, thin piezoelectric sensors are laminated on the top surface. Two types of sensor distribution are considered: a fully distributed and a helical or diagonal laminated. The total signal consists of four components resulting from the four strain components, and each of them is evaluated in detail. For sensing of torsion vibrations, a meridional polarized shear-type sensor with side electrodes is layered on the top surface of the shell structure. Sensing signals of natural shell modes are also evaluated. Analyses show that, in low order modes, the sensing signals induced by the circumferential membrane strains are the primary components of the total signal generations. The numerical results indicate the optimal location of the sensors. The proposed method is capable of determining the modal participation factors, while the testing signal is available; it is also capable of determining the mode shapes by using several distributed sensor segments.  相似文献   

16.
This paper presents research on dynamic characteristics of a piezoelectric six-dimensional heavy force/moment sensor for a large-load robotic manipulator. The theory on dynamic characteristics of the sensor structure is analyzed, and a mathematical model of the sensor dynamics, decoupled into separate vibration modes, is provided. This model is complemented by dynamic mode analysis of the sensor by finite-element modeling (FEM; ANSYS software). A dynamic calibration experiment is designed, and methods and principles for measurements and data analysis are provided. The characteristic dynamic vibration modes of the piezoelectric force/moment sensor are extracted by analyzing experimental data, yielding amplitude frequency and phase frequency curves of the transfer function linking the excitation loads with the output signals of the transducer. The results of the dynamic calibration experiment demonstrate the good dynamic characteristics of the piezoelectric six-dimensional heavy force/moment sensor. The natural frequencies in the three force directions are high, with values close 2000 Hz. This demonstrates the applicability of the presented six-dimensional heavy force/moment sensor to large industrial robotic manipulators.  相似文献   

17.
Mass flow rate measurement is very important in the majority of industry processes because the mass of fluid is not affected by ambient temperature and pressure as the volume will be. Conventional mass flow rate is normally derived from the volumetric flow rate multiplied by fluid density. The density can be obtained by a densitometer or calculated according to the temperature and pressure measured by a thermometer and pressure gauge respectively. However the measurement accuracy is not always satisfactory. Flowmeters directly measuring mass flow rate have been studied and developed recently, such as Coriolis and thermal flowmeters. Unfortunately they still have some limits in practical applications. A new method in which mass flow rate can be directly measured based on the vortex shedding principle is presented in this paper. As a vortex flowmeter, von Kàrmàn vortex shedding is generated by a bluff body (vortex shedder), leading to a pressure drop and pressure fluctuation. A single differential pressure sensor is employed to detect the pressure difference between upstream and downstream sides of the vortex shedder. Both vortex shedding frequency and pressure drop are contained from the output signal of the differential pressure sensor, so that the mass flow rate can be obtained from the pressure signal. Numerical simulation has been done to analyze the characteristics of the fluid field and design the measurement device. The Computational Fluid Dynamics (CFD) codes Fluent were used in the numerical simulation. Experiments were carried out with water and gas, and the results show that this method is feasible and effective to measure the mass flow rate. This method has also robustness to disturbances such as pipe vibration and fluid turbulence.  相似文献   

18.
Many mechanical defects generate periodical impulsive excitation forces which excite structural resonances and the mounted resonance frequency transducer. In order to characterise the time signals induced by such defects, specific indicators such as the crest factor and kurtosis need to be used. The root mean square value, which only characterises the signal energy, and not its shape, does not give information about the origin of the excitation. These two shape indicators are used currently, in the monitoring of rotating machinery and are not always used correctly. By using a simple model the properties and the limitations of these indicators are demonstrated and illustrated with real examples.  相似文献   

19.
A vortex-shedding flow meter produces an approximately sinusoidal signal whose average frequency is proportional to volumetric flow rate. The frequency of vortex shedding varies over a large range (up to 1:100), depending on the size of the flow meter. The conventional frequency estimator uses a zero-crossing algorithm (ZC), but this approach fails at low flows, where the signal-to-noise ratio is poor. An alternative is to use a phase-locked loop (PLL), but typical single PLL designs cannot cope with a wide frequency range at high noise levels. This paper describes a dual PLL structure that can be used to track the vortex shedding frequency over the flow meter’s full range of operation. This dual PLL provides improved accuracy and tracking ability compared with the conventional zero-crossing algorithm.  相似文献   

20.
Surface response to excitation (SuRE) method was originally developed for structural health monitoring (SHM) applications. SuRE was used to evaluate the performance of completed milling operations. The method generates surface waves on the plate and studies the spectrum changes at selected points to detect defects and change of compressive forces. In this study, the length, depth, and width of a slot were changed step by step. The surface of the aluminum plate was excited in the 20–400 kHz range with a piezoelectric element. A laser scanning vibrometer was used to monitor the vibrations at the predetermined grid points after the dimensions of the slot were changed methodically. The frequency spectrums of measured vibrations were calculated by using the Fast Fourier Transformation (FFT). The sums of the squares of the differences (SSD) of the spectrums were calculated to evaluate the change of the spectrums. The SuRE method was able to determine if the dimensions were changed in each case at all the selected points. The scanning laser vibrometer is not feasible to be used at the shop floor. However, the study demonstrated that a piezoelectric element attached to any of the grid points would be able to evaluate the completed machining process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号