首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
This work was aimed at enumerating the viable microorganisms in ripened Serra da Estrela cheeses, manufactured from both refrigerated and non-refrigerated milk, in various dairies located throughout the demarcated region. Scanning electron microscopy was used to analyze the microstructure, and thus aid in understanding possible differences in their microbiological profile. The cheeses were allowed to ripen under controlled conditions, and sampled at 60, 90, 120, 150 and 180 d following manufacture. Viable numbers of lactic acid bacteria, staphylococci, Enterobacteriaceae and yeasts were obtained following standard plate counting on a number of selective media. Lactococcus was the most abundant genus (above 108 cfu g−1 of cheese) up to 120 d of ripening. No significant microstructural differences were observed in cheeses manufactured in different dairies over the ripening process. However, microstructural differences were apparent between cheeses manufactured with refrigerated versus non-refrigerated milk.  相似文献   

3.
The contributions of the coagulant Cynara cardunculus and of the microflora of raw milk to the volatile-free fatty acid profile of Serra da Estrela cheese were evaluated. The experimental design included both a model system and, dual cheeses. The study in the model system showed that isovaleric acid was the predominant volatile compound after 7 d of ripening. The systems inoculated with Enterococcus faecium produced the highest amount of this volatile (ca. 135.8 mg kg−1 curd), while those inoculated with Lactobacillus plantarum produced the least (21.4 mg kg−1 curd); Lactococcus lactis produced moderate amounts (ca. 34.2 mg kg−1 curd) but a total amount of volatile-free fatty acids similar to those found in control samples. This is considered advantageous since this volatile fatty acid confers a harsh, piquant, mature flavour to cheese, coupled with the realisation that excess volatiles may result in off-flavours. The addition of cultures in experimental cheeses helped reduce ripening time to about one half. Inclusion of Lb. plantarum led to cheeses containing the highest amounts of volatiles, and exhibiting an aroma closest to that of typical Serra da Estrela cheese.  相似文献   

4.
Amino acid catabolism and generation of volatiles by lactic acid bacteria   总被引:4,自引:0,他引:4  
Twelve isolates of lactic acid bacteria, belonging to the Lactobacillus, Lactococcus, Leuconostoc, and Enterococcus genera, were previously isolated from 180-d-old Serra da Estrela cheese, a traditional Portuguese cheese manufactured from raw milk and coagulated with a plant rennet. These isolates were subsequently tested for their ability to catabolize free amino acids, when incubated independently with each amino acid in free form or with a mixture thereof. Attempts were made in both situations to correlate the rates of free amino acid uptake with the numbers of viable cells. When incubated individually, leucine, valine, glycine, aspartic acid, serine, threonine, lysine, glutamic acid, and alanine were degraded by all strains considered; arginine tended to build up, probably because of transamination of other amino acids. When incubated together, the degradation of free amino acids by each strain was dependent on pH (with an optimum pH around 6.0). The volatiles detected in ripened Serra da Estrela cheese originated mainly from leucine, phenylalanine, alanine, and valine, whereas in vitro they originated mainly from valine, phenylalanine, serine, leucine, alanine, and threonine. The wild strains tested offer a great potential for flavor generation, which might justify their inclusion in a tentative starter/nonstarter culture for that and similar cheeses.  相似文献   

5.
《Food microbiology》2004,21(2):233-240
Cheesemaking from batches of raw ewe's milk was carried out via inoculation with wild strains of Lactococcus lactis subsp. lactis ESB110019 and Lactobacillus plantarum ESB5004 independently, or combined with each other. Those two strains had been isolated from the native microflora of typical Serra da Estrela cheese. One control batch was processed in parallel without addition of any starter. The evolution in viable counts of the main micro-organisms (viz. lactic acid bacteria, Enterobacteriaceae, staphylococci and yeasts), as well as in secondary proteolysis (WSN, 2% TCASN, 12% TCASN and 5% PTASN), was monitored throughout ripening time (over a 63-day period) in cheeses from each batch. The sensory features of the fully ripened cheeses were also assessed. Cheeses manufactured with starter showed significantly lower levels of viable Enterobacteriaceae than those manufactured without starter; viable counts of enterococci and staphylococci did significantly increase after addition of L. lactis or Lb. plantarum, respectively. Proteolysis in terms of WSN and 5% PTASN was not significantly affected by the lactic acid bacteria tested when compared to the control, but L. lactis played a significant role toward increasing the 2% TCASN content of cheeses; both strains led to a statistically significant increase of the 12% TCASN. The scores for flavor and texture of the control cheeses were somewhat above those for the experimental cheeses manufactured with starter.  相似文献   

6.
Build-up of flavour compounds throughout ripening of raw milk cheeses may result in strong over-ripening notes during refrigerated storage. In order to control the formation of free fatty acids (FFAs) and volatile compounds, and the appearance of off-odours, raw milk cheeses were high-pressure-processed (HPP) 21 or 35 days after manufacture at 400 or 600 MPa. Ripening proceeded at 8 °C until day 60 and, afterwards, cheeses were held at 4 °C until day 240. The effect of HPP on the formation of FFAs and volatile compounds was dependent on pressure level and cheese age at the time of treatment. On day 60, acetic and propionic acids, branched-chain FFAs and short-chain FFAs showed the lowest (p?<?0.05) concentrations in cheeses treated at 400 or 600 MPa on day 21, while medium- and long-chain FFAs were at similar levels in all cheeses. HPP influenced significantly (p?<?0.05) 84 out of the 94 volatile compounds found in cheese. On day 60, the lowest (p?<?0.05) concentrations of acids, alcohols and esters were recorded for cheeses treated at 400 or 600 MPa on day 21, and the lowest (p?<?0.05) concentrations of ketones for cheeses treated at 400 MPa on days 21 or 35. On day 240, all HPP cheeses showed lower (p?<?0.05) concentrations of aldehydes, esters and, particularly, sulphur compounds than control cheese, which exhibited putrid and rancid off-odours from day 120 onwards. Principal component analysis combining FFAs and volatile compounds discriminated 240-day control cheese from 120-day control cheese and both from the rest of cheeses.  相似文献   

7.
Kashar cheeses were manufactured from pure ovine (OV), bovine (BV) and caprine (CP) milk, and the chemical composition, cheese yield, proteolysis, hardness, meltability and volatile composition were studied during 90 days. Gross chemical composition, cheese yield and level of proteolysis were higher in OV cheeses than those of BV or CP cheeses. Glu, Val, Leu, Phe and Lys were the most abundant free amino acids (FAA) in the samples, and the concentrations of individual FAA were at the highest levels in OV cheeses with following BV and CP cheeses. Urea‐PAGE patterns and RP‐HPLC peptide profiles of the BV cheeses were completely different from the small ruminants’ milk cheeses (OV or CP). Higher and lower hardness and meltability values were observed in CP cheeses, respectively. OV cheeses resulted in higher levels of the major volatile compounds. In conclusion, the Kashar cheese made using OV milk can be recommended due to high meltability, proteolysis and volatiles.  相似文献   

8.
Enzyme-rich cheeses are prone to over-ripening during refrigerated storage. Blue-veined cheeses fall within this category because of the profuse growth of Penicillium roqueforti in their interior, which results in the production of highly active proteinases, lipases, and other enzymes responsible for the formation of a great number of flavor compounds. To control the excessive formation of free fatty acids (FFA) and volatile compounds, blue-veined cheeses were submitted to high-pressure processing (HPP) at 400 or 600 MPa on d 21, 42, or 63 after manufacture. Cheeses were ripened for 30 d at 10°C and 93% relative humidity, followed by 60 d at 5°C, and then held at 3°C until d 360. High-pressure processing influenced the concentrations of acetic acid and short-chain, medium-chain, and long-chain FFA. The effect was dependent on treatment conditions (pressure level and cheese age at the time of treatment). The lowest concentrations of acetic acid and FFA were recorded for cheeses treated at 600 MPa on d 21; these cheeses showed the lowest esterase activity values. Acetic acid and all FFA groups increased during ripening and refrigerated storage. The 102 volatile compounds detected in cheese belonged to 10 chemical groups (5 aldehydes, 12 ketones, 17 alcohols, 12 acids, 35 esters, 9 hydrocarbons, 5 aromatic compounds, 3 nitrogen compounds, 3 terpenes, and 1 sulfur compound). High-pressure processing influenced the levels of 97 individual compounds, whereas 68 individual compounds varied during refrigerated storage. Total concentrations of all groups of volatile compounds were influenced by HPP, but only ketones, acids, esters, and sulfur compounds varied during refrigerated storage. The lowest total concentrations for most groups of volatile compounds were recorded for the cheese pressurized at 600 MPa on d 21. A principal component analysis combining total concentrations of groups of FFA and volatile compounds discriminated cheeses by age and by the pressure level applied to HPP cheeses.  相似文献   

9.
Manchego cheese can be manufactured from raw or pasteurized ewes' milk. An automatic purge and trap apparatus, coupled to a GC-MS was used to isolate. identify and compare the relative amounts of the volatile components of raw and pasteurized Manchego cheese during ripening. The majority of volatile compounds were more abundant in raw milk (RM) cheeses than in pasteurized milk (PM) cheeses. Alcohols and esters predominated in the profile of RM Manchego cheese, while methyl-ketones and 2,3-butanedione were quantitatively important in PM cheeses. Branched chain alcohols were much more abundant in RM cheeses. The discriminant analysis separated 100% samples into RM or PM cheeses by using only 16 volatile compounds. Aroma intensity was correlated with esters, branched chain aldehydes and branched chain alcohols in RM cheeses, and with esters, branched chain aldehydes, 2-methyl ketones and 2-alkanols in PM cheeses. Diacetyl was positively correlated with the aroma attribute 'toasted' and negatively correlated with aroma quality in PM cheeses.  相似文献   

10.
Stage of lactation, use of bulk milk or milk from individual flocks, and cheese‐making in farmhouse or industrial factory are important factors affecting the production and quality of Idiazabal cheese. The volatile composition of cheese samples made from raw ewe's milk in farmhouses or industrial plants at two different times of the year and aged for 90 and 180 days was analysed by dynamic headspace coupled to GC‐MS. Short‐chain fatty acids, primary and secondary alcohols, methyl ketones and ethyl esters were the most abundant compounds in the aroma of Idiazabal cheese samples. Differences in the volatile composition were found between farmhouse and industrial cheeses made at different times of the year and ripened for 90 or 180 days. Likewise, the sensory profiles of the farmhouse and industrial cheeses were significantly different, regardless of the time of the year and ripening time. The results for the principal component analysis (PCA) performed on the sensory attributes of the cheese samples showed two PCs defined as ‘farmhouse flavour factor’ and ‘industrial flavour factor’. Farmhouse cheeses showed high scores for buttery, milky and toasty odours, and buttery and nutty flavours, whereas industrial cheeses showed high scores for sharp, rennet and brine odours, and rennet and rancid flavours. The percentages of methyl ketones such as 3‐hydroxy‐2‐butanone, 2‐butanone, 2‐pentanone and 2‐heptanone, and acids such as n‐propanoic, 2‐methylpropanoic and 3‐methylbutanoic acids were higher in farmhouse cheeses than in industrial cheeses. On the other hand, the percentages of esters such as ethyl butanoate and ethyl hexanoate, and alcohols such as 3‐methyl‐1‐butanol, and acids like n‐hexanoic acid were higher in industrial cheeses than in farmhouse cheeses. Relationships between sensory attributes and volatile compounds were studied on the basis of the differences found in sensory profile and volatile composition between farmhouse and industrial cheeses. Copyright © 2005 Society of Chemical Industry  相似文献   

11.
The contribution of Debaryomyces hansenii, Kluyveromyces lactis and Kluyveromyces marxianus strains to the typical flavour of traditional ewes' and goats' cheeses was assessed. Fourteen yeast strains were grown in liquid medium mimicking cheese composition and volatile compounds were identified by gas chromatography-mass spectrometry. Yeasts were able to produce key volatile compounds characteristic of the cheeses from which they were isolated. Inter-species and inter-strain variations were observed. Under the conditions tested, D. hansenii produced the lowest levels of volatile compounds, with large intra-strain variations. Kluyveromyces strains primarily produced esters and alcohols. K. marxianus strains were associated with the production of acids, ethyl decanoate, 1-propanol and benzaldehyde, whereas K. lactis was correlated with the presence of ketones, ethyl acetate and secondary alcohols. In conclusion, this study shows the heterogeneous potential of dairy yeasts to contribute to final cheese flavour.  相似文献   

12.
The main objective of this paper was to study the changes during refrigerated storage in the volatile compounds and the sensory characteristics of raw ewe's milk mature Torta del Casar cheese High Pressure Processing-treated (200 or 600 MPa for 5 or 20 min) on day 60 after manufacture. Most of the volatile compounds and sensory characteristics were significantly affected by the refrigerated storage and to a lesser extent by the HPP treatment. The 600 MPa HPP treatments caused a decrease in the levels of the most abundant volatile compounds (acids and esters) and in bitterness scores on days 120 and 180. A significant effect was also found for some compounds, the overall flavour, and saltiness on day 240 after manufacture.Industrial relevance textHigh pressure processing treatments at 600 MPa applied to mature raw ewe's milk cheese such as “Torta del Casar” cheese could be an interesting option for the cheese industry to prevent some of the changes that occur during refrigerated storage that are related to over-ripening and excessive bitterness development. In addition, compared to the application of the treatment before maturation is completed, treating mature cheeses is convenient for the cheese industry because it provides the advantage of not requiring any unpackaging steps, which allows the food industry the commercialization of the cheeses without any additional packaging.  相似文献   

13.
To support legal protection with objective technical data and to promote enforcement of high quality standards a few European countries have created Appélation d'Origine Protegées. This paper reviews and updates fundamental and applied aspects encompassing microbiological and biochemical characteristics of traditional cheeses with Appélation d'Origine Protegée manufactured in the Iberian Peninsula from ovine, caprine, or both milks. Ovine and caprine cheeses with Appélation d'Origine Protegée from Portugal and Spain can be divided into four distinct groups based on milk source and rennet type: 1) Azeit?o, Castelo Branco, Evora, Nisa, Serpa, Serra da Estrela, and La Serena cheeses are manufactured with raw ovine milk and coagulated via plant rennet; 2) Terrincho, Idiazábal, Manchego, Roncal, and Zamorano cheeses are manufactured with raw ovine milk and coagulated via animal rennet; 3) Cabra Transmontano and Majorero are manufactured with raw caprine milk and coagulated via animal rennet; and 4) Amarelo da Beira Baixa, Picante da Beira Baixa, and Raba?al are manufactured with mixtures of raw ovine and caprine milks and coagulated via animal rennet.  相似文献   

14.
“Castelo Branco” cheese is a Portuguese DOP cheese made from raw ewe’s milk coagulated with Cynara cardunculus, ripened for at least 40 days. “Merino da Beira Baixa” pure race is frequently used to produce milk for this cheese, however, exotic races such as Assaf and crusade of these two races are also used. The aim of this work has been to compare the volatile profile and sensory characteristics of DOP “Castelo Branco” cheeses manufactured during winter season with milk of breeds from Merino, Assaf and crusade of these two races and identify volatile compounds that can distinguish these cheeses.  相似文献   

15.
Levels of volatile compounds in Arzúa-Ulloa and Tetilla cheeses manufactured from raw and pasteurized milk were investigated. Analysis of volatile compounds in six raw milk (RM) starter-free cheeses (15–45 days old) and six pasteurized milk (PM) cheeses made with deliberately added starters (15–45 days old) manufactured in different dairies, was performed on an automatic dynamic headspace apparatus coupled to a GC/MS. The volatile fraction of RM cheeses displayed 46 volatile compounds (34 for PM cheeses) including fatty acids, esters, aldehydes, alcohols, ketones, hydrocarbons and sulphur compounds. Fatty acids and several esters were only detected in RM cheeses. Moreover, the highest contents of methylketones, secondary alcohols and branched-chain aldehydes and alcohols were also observed in RM cheeses. All results confirm more intense lipolysis in RM cheeses than in PM cheeses. In addition, branched-chain aldehydes and alcohols were significantly more abundant in RM than in PM cheeses, which indicates that catabolism of branched-chain amino acids was significantly higher in RM cheeses. This study has provided useful information which will allow the selection of starter and non-starter bacteria more suitable for manufacturing Arzúa-Ulloa and Tetilla pasteurized milk cheeses with organoleptic characteristics similar to those of traditional raw milk cheeses.  相似文献   

16.
《International Dairy Journal》2005,15(6-9):741-758
Solid phase microextraction (SPME) and purge and trap (P&T) methods were compared to establish their effectiveness for the extraction of cheese aroma compounds from selected raw milk protected designation of origin (PDO) cheeses. The profiles of the volatile fraction from each cheese variety obtained by using the two extraction methods were significantly different. SPME fibres were more effective for extracting medium and high boiling compounds, P&T was better for extracting the highly volatile compounds. Gruyère Switzerland cheeses showed high concentrations of alkenes, aldehydes, methyl ketones, butane-2,3-dione, unsaturated alcohols, branched chain acids and 2,6-dimethyl pyrazine. Manchego cheeses contained high concentrations of alkanes, alkanols, prop-2-en-1-ol, propan-2-one and butan-2-one and their corresponding reduction products propan-2-ol and butan-2-ol, propyl esters and aromatic compounds. Ragusano cheeses contained high concentrations of fatty acids and ethyl and butyl esters. Discriminant analyses, performed separately for each extraction method, correctly classified all the samples by their PDO origin.  相似文献   

17.
The purpose of this work was to investigate the influence of the spontaneous microbial population on the flavor of Torta del Casar cheese. A total of 16 batches of cheeses with different microbial qualities were used. Their physicochemical and microbial characteristics were evaluated during ripening and then related with the volatile compounds, taste, and flavor properties of the finished cheeses. Acids were the most abundant volatile compounds, followed by alcohols and carbonyls. The amount of acetic acid and several alcohols were linked to cheeses with higher counts of lactic acid bacteria (LAB), whereas Enterobacteriaceae counts were associated with semivolatile fatty acids. The gram-positive catalase-positive cocci counts were correlated with esters and methyl ketones. Although the role of the LAB in the flavor development of Torta del Casar is the most relevant, other microbial groups are necessary to impart the flavor of the cheese and to minimize the possible off-flavor derived from excessive concentrations of LAB metabolites, such as acetic acid.  相似文献   

18.
The objective of this investigation was to compare the composition and changes in the concentration of volatiles in low‐fat and full‐fat Tulum cheeses during ripening. Tulum cheese was manufactured from low‐ or full‐fat milk using exopolysaccharide (EPS)‐producing or non‐EPS‐producing starter cultures. A total of 82 volatile compounds were identified belonging to the following chemical groups: acids (seven), esters (21), ketones (14), aldehydes (six), alcohols (14) and miscellaneous compounds (20). The relative amounts of acids, alcohols and aldehydes increased in the cheeses made with EPS‐producing cultures during 90 days of ripening. Differences were found in the volatile profile of full‐fat Tulum cheese compared with the low‐fat variant, especially after 90 days of ripening. Exopolysaccharide‐producing cultures changed the volatile profile, and the EPS‐producing cultures including Streptococcus thermophilus + Lactobacillus delbrueckii subsp. bulgaricus + Lactobacillus helveticus (LF‐EPS2) produced cheese with higher levels of methyl ketones and aldehydes than the non‐EPS cultures. In the sensory analysis, full‐fat Tulum cheeses and the cheese produced with the EPS‐producing culture containing Lb. helveticus (LF‐EPS2) were preferred by the expert panel. It was concluded that the use of EPS‐producing starter cultures in the manufacture of low‐fat Tulum cheese had the potential to improve the flavour.  相似文献   

19.
20.
Headspace sampling coupled with multi-capillary column-ion mobility spectrometry (HS-MCC-IMS) has been used for extraction and identification of some volatile metabolites from different types of goat cheese samples. The only manual operation carried out in this method was the introduction of samples into vials; the following steps (headspace generation, injection of the volatiles compounds into MCC and IMS detection) were fully automated. The analysis by MCC-IMS allowed rapid and simple differentiation of goat cheeses made with raw and pasteurized milk. MCC-IMS produced multidimensional ion mobility spectra with different retention times and intensity information different for some individual metabolites. A total of six metabolites were identified in goat cheeses including 1 alcohol (1-hexanol), 1 ketone (2-nonanone), 2 aldehydes (octanal, trans-2-heptanal) and 2 esters (ethyl butanoate and propyl butanoate). Furthermore, the evolution of one targeted metabolite (ethyl butanoate) was monitored through different ripening times (60, 150, 180, 210, 240, 270 days). These preliminary results showed that this volatile compound increased during cheese ageing according to biochemical and microbial dynamic of the matrix, and therefore ethyl butanoate could be a potential marker of ripening time in these kinds of cheese samples. Therefore, the method could be used for quality control purposes in goat cheese producers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号