首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elongational flow properties of TiO2 nanoparticle/polypropylene (PP) nanocomposite fibers were studied via melt spinning. The diameter, tension, and flow rate of fibers were directly measured and used to calculate the apparent elongational viscosity and apparent elongational strain rate using Cogswell’s theory. Thermal gravimetric analysis (TGA) was used to demonstrate that the TiO2 nanoparticles improved the thermal stability of the PP fibers. With a 1–3 wt % loading of the TiO2 nanoparticles, the PP fiber decomposition temperatures ranged from 338 °C for the pristine polymer to 342, 349, and 367 °C; the decomposition was accompamied by an initial 95 wt % weight loss. In addition, the well-distributed morphology of the TiO2 nanoparticles on the side surface of the PP matrix was observed using atomic force microscopy (AFM). At 1 wt % loading of the TiO2 nanoparticles, the surfaces of the PP nanofibers contained mono-disperse nanoparticles with sizes of 20–50 nm. Furthermore, the TiO2 nanoparticle/PP nanocomposite fibers were shown to be thermally stable and are suitable for application as an antibacterial polymer.  相似文献   

2.
Rare earth/polypropylene (PP)/thermoplastic polyurethane (TPU) fibers were prepared by melting spinning with different mass ratios of PP to TPU. Then the rare earth/TPU shielding fiber was obtained by removing the PP matrix phase from the blend fiber using xylene. The fibers were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), thermogravimetric analyzer (TG), and scanning electron microscopy (SEM). Short fibers were compression-molded for the test of lead equivalent. The results showed that the lead equivalent of the rare earth/TPU composite fibers was 0.19 mmPb when the mass ratio of PP/TPU increased to 60/40. At this mass ratio, the X-ray shielding performance of the fiber was the best. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47435.  相似文献   

3.
The spinnability and mechanical properties of poly(propylene) (PP)/zeolite‐supported Ag+ (zeolite‐Ag)/ethylene vinyl acetate (EVA) ternary blend fibers were studied. It was found that the spinning temperature of the ternary blend fibers was decreased in the presence of EVA. The addition of 2 wt % EVA substantially improved the spinnability of the blend system by enhancing its flowability. It was also found that the ternary fiber with EVA28 (28 wt % vinyl acetate content) showed balanced improvement of mechanical properties by a concomitant increase in modulus and tensile strength. The improvements of spinnability and mechanical properties suggested that a core–shell structure of zeolite‐Ag/EVA28 particles, with zeolite‐Ag as the core and EVA28 as the shell, was formed and remained during the melt‐mixing process of the blended chips and during the course of fiber processing. EVA probably enhanced the binding between the zeolite‐Ag and the PP matrix, as made evident in SEM microphotographs. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1460–1466, 2005  相似文献   

4.
A noninvasive approach is used to fabricate electronically conductive and flexible polymer fibers by fixing carbon nanotube (CNT) networks as a thin layer on thermoplastic polyurethane (TPU) multifilaments. The anchoring of the CNT layer is achieved by partially embedding or penetrating CNTs from the dispersion into the swollen multifilament surface. Thus a stable and high conductivity (up to 102 S/m at 10 wt.% CNT loading) of the resulting CNTs–TPU fibers is realized while the mechanical properties of the TPU multifilament, especially the strain to failure of >1500%, are not affected by increasing the thickness of the CNT layer. Real time analysis of the resistance of the CNTs–TPU fibers during incremental tensile loading tests reveal that the increase of resistance as a function of the strain is attributed to stretching-induced deformation, alignment, and, at high strains, destruction of the conducting network. Moreover, the changes in resistance are highly reversible under cyclic stretching up to a strain deformation of 400%.  相似文献   

5.
Polymer composites with high dielectric constant are promising materials for energy-storage application. However, their development has generally been hindered due to the challenge to balance dielectric constant and loss tangent. In this work, a novel thermoplastic polyurethane (TPU)-based composite with high dielectric constant and low loss tangent was prepared by inducing polyamide-1(PA1). The optimal content of PA1 in TPU matrix was 1.0 wt %. Importantly, the dielectric constant of TPU exhibited great stability at the frequency range of 103–106 Hz and increased sharply with the addition of PA1. In specific, the dielectric constant of TPU increased from 8 to 41 with the incorporation of 1.0 wt % PA1, which was five times higher than that of pure TPU. Meanwhile, the loss tangent still kept at a low level of less than 0.02. This work may provide a new direction for preparation of dielectric polymer composites with excellent comprehensive performance. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48469.  相似文献   

6.
This work investigated the deformation and fracture behavior of polypropylene–ethylene vinyl alcohol (PP/EVOH) blends compatibilized with ionomer Zn2+. Uniaxial tensile tests and quasistatic fracture experiments were performed for neat PP and for 10 and 20 wt % EVOH blends with different ionomer contents. The addition of EVOH copolymer to PP led to an increase in the Young's modulus whereas the yield strength was decreased with the EVOH content as a consequence of the higher stiffness of EVOH and the poor interfacial adhesion between PP and EVOH, respectively. Furthermore, the incorporation of EVOH into PP promoted stable crack growth. Neat PP displayed nonlinear load‐displacement behavior with some amount of slow crack growth preceding unstable brittle fracture, whereas most PP/EVOH blends exhibited “pseudostable” fracture characterized by slow crack growth that could not be externally controlled. All blends exhibited lower resistance to crack initiation than PP but the fracture propagation resistance was significantly improved. For 10 wt % EVOH blends, the resistance to crack initiation was roughly constant with the ionomer content up to 5%, then it increased with the further addition of compatibilizer. Conversely, for 20 wt % EVOH blends, the resistance to crack initiation appeared to be independent of the ionomer content. The better resistance to crack initiation exhibited by the 10 wt % EVOH blends could be attributed to a higher level of compatibilization in these blends. By contrast, 20 wt % EVOH blends with ≤2% ionomer content showed completely stable crack growth. In addition, JR curves and valid plane strain fracture toughness values for these blends could also be determined. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1271–1279, 2005  相似文献   

7.
Currently, the fabrication of microcell and bimodal cell structures (BCS) in polymer foams by using supercritical fluids has become a hot as well as a challenging research area worldwide. In this work, an environmentally friendly, effective, facile, and CO2-based foaming technique was presented to fabricate microcellular polypropylene (PP) foams with BCS via blending with thermoplastic polyurethane (TPU). The toughness, thermal properties, rheological properties, and foamability of PP were systematically investigated with gradual incorporation of TPU. Representative sea-island structure was observed in the scanning electron microscopy (SEM) images for the fracture surface of various PP/TPU samples. Rheological measurement results demonstrated that the viscoelasticity of various PP/TPU samples was improved remarkably compared with that of pure PP and pure TPU. The impact strength of various PP/TPU samples possessed the highest value as 12.4 kJ/m2 with the TPU content of 15 wt%. After the addition of TPU, an ameliorative cellular morphology was observed in the SEM micrographs of various PP/TPU samples and their volume expansion ratio was enhanced significantly thanks to their improved melt elasticity. Moreover, it is worth noting that BCS appeared in various PP/TPU foams when the TPU content exceeded 5 wt%.  相似文献   

8.
Industrial hemp fibers were treated with a 5 wt % NaOH, 2 wt % Na2SO3 solution at 120°C for 60 min to remove noncellulosic fiber components. Analysis of fibers by lignin analysis, scanning electron microscopy (SEM), zeta potential, Fourier transform infrared (FTIR) spectroscopy, wide angle X‐ray diffraction (WAXRD) and differential thermal/thermogravimetric analysis (DTA/TGA), supported that alkali treatment had (i) removed lignin, (ii) separated fibers from their fiber bundles, (iii) exposed cellulose hydroxyl groups, (iv) made the fiber surface cleaner, and (v) enhanced thermal stability of the fibers by increasing cellulose crystallinity through better packing of cellulose chains. Untreated and alkali treated short (random and aligned) and long (aligned) hemp fiber/epoxy composites were produced with fiber contents between 40 and 65 wt %. Although alkali treatment generally improved composite strength, better strength at high fiber contents for long fiber composites was achieved with untreated fiber, which appeared to be due to less fiber/fiber contact between alkali treated fibers. Composites with 65 wt % untreated, long aligned fiber were the strongest with a tensile strength (TS) of 165 MPa, Young's modulus (YM) of 17 GPa, flexural strength of 180 MPa, flexural modulus of 9 GPa, impact energy (IE) of 14.5 kJ/m2, and fracture toughness (KIc) of 5 MPa m1/2. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
A polymer blend based on thermoplastic elastomeric polyurethane and polymethylmethacrylate (TPU/PMMA) has been studied by positron annihilation lifetime spectroscopy (PALS) and thermomechanical analysis. Thermomechanical analysis allowed the determination of two glass transitions for the blends in the overall range of compositions. The first one (Tg1) showed a constant value of ?45°C for all blends, the same value of the pure TPU. The second glass transition (Tg2), which is associated with a PMMA rich phase, presented variations with composition. Tg2 showed minimum values for the blends in the 20–40 wt % TPU range, which indicates increase of interaction in this composition region. PALS systematic investigation allowed the determination of relative mean free volume fractions, fv/C, and binary interchain interaction parameters, β. These parameters exhibited a noticeable negative deviation from additivity in all range of composition and minima for the 20 wt % TPU blend. PALS results were interpreted as associated to a strong attractive interchain interaction between TPU and PMMA in the PMMA rich phase which contracts the free volume fraction of the blends. Moreover, the miscibility achieved in the PMMA rich phase would allow a good adhesion between this phase and the TPU phase, which was corroborated by scanning electron microscopy images. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

10.
Electrospinning technique was used to produce ultrafine fibers from thermoplastic polyurethane (TPU). A direct comparison between melt and solution electrospinning of TPU was provided for the evaluation of process–structure relationship. It was found that the deposition rate of melt electrospinning (0.6 g h?1) is four times higher than that of solution electrospinning (0.125 g h?1) for TPU under the same processing condition. However, the average fiber diameters of solution electrospun TPUs (220–280 nm) were much lower than those of melt electrospun TPUs (4–8 μm). The effect of processing variables including collection distance and electric field strength on the electrospun fiber diameter and morphology was also studied. The findings indicate that increasing the electric field strength yielded more electrical forces acting on polymer jet and resulted in a decrease in fiber diameter as a result of more fiber drawing in both solution and melt electrospun fibers. It was also demonstrated that increasing the collection distance led to an improvement in the solidification of melt electrospun fibers and thus less fused fibers were obtained. Finally, a close investigation of fiber structures revealed that melt electrospun TPU fibers had smooth surface, whereas solution electrospun TPU fibers showed high intensity of cracks on the fiber surface. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
Wood fibers are increasingly being used as reinforcement in commercial thermoplastic composites due to their low cost, high specific properties and renewable nature. The ultimate goal of our research was to find a fundamental understanding of the mechanical behavior of poplar/polypropylene (PP) composites. The effect of wood fiber concentrations and mixing temperature on the mechanical properties of composites, prepared by using MAPP as the coupling agent, was investigated. In the sample preparation, four levels of fiber loading (10, 20, 30, and 40 wt%) and three compounding temperatures (180, 190, and 200oC) were used. Most major changes in composite performance occurred at fiber contents above 30%. The results clearly showed that the fiber loading of 30 and 40 wt% at 190oC was provided adequate reinforcement to increase the tensile and flexural strength of the PP powder. The modulus also increased with increasing the fiber content, because poplar fibers are believed to be more rigid than polymer. However the addition of wood fibers resulted in a decrease in elongation and impact properties of the composites. The FTIR spectroscopy showed that the copolymer was bonded to the fibers by ester linkages and hydrogen bonds at 1705–1735 cm−1. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

12.
Commercially available organosilane (3‐glycidoxypropyltrimethoxysilane (GPTMS)) coupling agent was used to treat talc in order to improve the affinity relative between the filler and the polymer in composites as well as filler and polymer in the thermoplastic polyurethane/polypropylene (TPU/PP) blends (talc content was 5 wt%). The talc particles were first modified with GPTMS and then introduced into TPU, PP as well as TPU/PP blends with different weight ratios of polymers using blending method and subsequently injection molded in a hydraulic press. The aim was to report the effect of silane coupling agent on the thermal and morphological properties of talc filled composites and blends. The results showed that the thermal properties of the TPU, PP composites and TPU/PP blends were improved with the addition of silane treated talc (higher melting (Tm), crystallization (Tc) temperatures and degree of crystallinity (χc)). The glass transition temperature (Tg) obtained by dynamic mechanical analysis (DMA) of the TPU soft segments in TPU/PP blends increased with the addition of untreated and silane treated talc due to lower mobility of the soft segments in TPU and better miscibility of TPU and PP. TPU/PP blends with the silane treated talc show better thermal stability than the TPU/PP blends with untreated talc. POLYM. ENG. SCI., 55:1920–1930, 2015. © 2014 Society of Plastics Engineers  相似文献   

13.
To obtain flexile poly(lactic acid)-based melt-blown nonwoven filtration material, poly(lactic acid)/poly(?-caprolactone) melt-blown nonwoven with various components were melt-spun by melt-blown processing in the Melt-blown Experiment Line. The 3 wt.% tributyl citrate to poly(?-caprolactone) was added in the composites as compatibilizer. The effect of poly(?-caprolactone) on the structure, morphology, mechanical and filtration properties of poly(lactic acid)/poly(?-caprolactone) melt-blown nonwoven was reported. Scanning electron microscopy micrographs revealed good dispersion of the additive in the fiber webs. The crystallinity of melt-blown webs with poly(?-caprolactone) was more than that of poly(lactic acid) alone. The tensile strength, ductility and air permeability of poly(lactic acid) melt-blown nonwovens were enhanced significantly. The input of poly(?-caprolactone) increased the diameter of fibers and decreased the filtration efficiency of poly(lactic acid)/poly(?-caprolactone) melt-blown nonwoven.  相似文献   

14.
A novel cristobalite aluminum phosphate particle (c-AlPO4) modified SiC whisker toughened mullite coating (c-AlPO4-SiCw-mullite) was prepared on SiC coated carbon fiber reinforced SiC composites (C/SiC) by a new sol-gel method combined with air spraying to improve the oxidation resistance of SiCw-mullite coating. Results show that c-AlPO4-SiCw-mullite coatings with 10 and 20 wt.% of c-AlPO4 exhibited obviously improved oxidation resistance at 1773 K in ambient air for 100 h than SiCw-mullite coating. Moreover, the oxidation resistance of c-AlPO4-SiCw-mullite coatings were rapidly declined when the c-AlPO4 in c-AlPO4-SiCw-mullite coating were set to 30 and 40 wt.%. The c-AlPO4-SiCw-mullite coating with 20 wt.% of c-AlPO4 showed most pronounced oxidation resistance, the weight loss rate after the oxidation in ambient air for 210 h was merely 3.00 × 10?5 g·cm?2 h?1. The failure of c-AlPO4-SiCw-mullite coating with 20 wt.% of c-AlPO4 was due to the generation of penetrative micro-cracks and micro-holes in the coating, which cannot be self-healed by the silicate glass layer after long time oxidation at 1773 K.  相似文献   

15.
Polypropylene (PP) nanofibers, a few hundred nanometers in diameter, are of immense importance in the fiber industry. This article reports the fabrication of delicate PP nanofibers. Polyvinyl butyral (PVB) was added to PP as a blend component, and a nozzle-free melt-electrospinning system with a line-like CO2 laser melting device was used to manufacture PP nanofibers. We investigated the effect of PVB ratio on fiber diameter. The addition of PVB was found to be potentially very beneficial in PP/PVB blends, resulting in improved PP crystallinity and a steady decrease of fiber diameter with high productivity. The reduction of fiber diameter was attributed to the decline of viscosity, increase of surface adhesion properties, and polarity of blends due to the inclusion of PVB. To produce PP nanofiber, the PVB was removed from PP/PVB blend fibers with an ethanol treatment. A drastic drop of PP fiber diameter followed by fiber splitting was observed after PVB removal. We obtained PP nanofibers with a diameter as low as 181 ± 105 nm from the blend fiber with 90% PVB. Infrared spectroscopy of fibers demonstrated that PP fibers from pure polymer and blends showed the same characteristic peaks. POLYM. ENG. SCI., 60: 362–370, 2019. © 2019 Society of Plastics Engineers  相似文献   

16.
PP/PET混合型熔喷保暖材料的研制   总被引:1,自引:0,他引:1  
研制了一种PP/PET混合型熔喷保暖材料,采用电子扫描显微镜分析了该熔喷材料的纤网形态结构,并对其透气性、保暖性以及力学性能等进行了测试。结果表明:加入PET纤维之后,材料的纤网空隙增大,其透气性能得到提高;当PET纤维的质量分数为50%时,材料的保温率高达62.47%,强度为6.5 N/5 cm,是一种优良的保暖材料。  相似文献   

17.
Pure thermoplastic polyurethane (TPU), polypropylene (PP), and TPU/PP blends with different weight ratios prepared in a twin‐screw extruder were investigated by dynamic mechanical analysis (DMA), the universal tester for mechanical investigation, and by wide‐angle X‐ray diffraction (WAXD). The addition of PP above 20 wt % to the TPU stepwise changed the ductility and Young's modulus, i.e., apparently a kind of ductile → brittle transition occurred between TPU/PP 80/20 and TPU/PP 60/40 blends. This fact and the result of analysis of WAXD curves indicated matrix → dispersed phase inversion in this concentration region. TPU melt enabled easier migration of the PP chains and prolonged crystallization of PP matrix during solidification process affecting thus crystallite size, orientation, and crystallinity. In accordance to this fact, DMA results indicated partial miscibility of PP with polyurethane in the TPU/PP blends due to the lack of interfacial interaction and adhesion between the nonpolar crystalline PP and polar TPU phases. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104, 3980–3985, 2007  相似文献   

18.
以纤维素/NMMO/水溶液为原料,制备了Lyocell熔喷非织造布。采用扫描电子显微镜分析了该熔喷纤网的形态结构,并研究了成网方式、气流初始温度及模头温度等对纤维形貌及直径的影响。结果表明,Lyocell熔喷纤网呈三维网状结构,存在"shots"、纤维间的融合与枝化现象,且得到的熔喷Lyocell纤维具有光滑的表面;成网方式和气流初始温度显著地影响熔喷Lyocell纤维的形貌;在一定的温度范围内,提高气流初始温度和模头温度,都能制备更细的熔喷Lyocell纤维。  相似文献   

19.
Composites based on isotactic polypropylene (PP) and sisal fiber (SF) were prepared by melt mixing and injection molding. The melt mixing characteristics, thermal properties, morphology, crystalline structure, and mechanical behavior of the PP/SF composites were systematically investigated. The results show that the PP/SF composites can be melt mixed and injection molded under similar conditions as the PP homo‐polymer. For the composites with low sisal fiber content, the fibers act as sites for the nucleation of PP spherulites, and accelerate the crystallization rate and enhance the degree of crystallinity of PP. On the other hand, when the sisal fiber content is high, the fibers hinder the molecular chain motion of PP, and retard the crystallization. The inclusion of sisal fiber induces the formation of β‐form PP crystals in the PP/SF composites and produces little change in the inter‐planar spacing corresponding to the various diffraction peaks of PP. The apparent crystal size as indicated by the several diffraction peaks such as L(110)α, L(040)α, L(130)α and L(300)β of the α and β‐form crystals tend to increase in the PP/SF composites considerably. These results lead to the increase in the melting temperature of PP. Moreover, the stiffness of the PP/SF composites is improved by the addition of sisal fibers, but their tensile strength decreases because of the poor interfacial bonding. The PP/SF composites are toughened by the sisal fibers due to the formation of β‐form PP crystals and the pull‐out of sisal fibers from the PP matrix, both factors retard crack growth.  相似文献   

20.
A method to synthesize low‐molecular‐mass diurethane compounds via reaction between diisocyanates and various primary and secondary alcohols was presented. A number of diurethanes with the melting points below 100oC were revealed. These diurethanes can be used as fusible plasticizers for thermoplastic polyurethanes (TPU) and for high‐filled composites based thereupon. TPU based on oligotetramethyleneoxide diol and on 4,4′‐diphenylmethane diisocyanate and containing 30% of fusible diurethanes were produced. In the presence of such plasticizers, a 3‐order increase in magnitude of the melt flow index was demonstrated. Data evincing significantly larger strength values of TPU and of tungsten‐containing high‐filled composites (94.2 wt %), comparing with thermoplastics plasticized with low‐molecular‐mass liquids, were presented. The mechanism of this phenomenon attributed to the partial crystallization of diurethanes in TPU compositions was described. Samples of low‐toxic thermoplastic polyurethane having density value of 9.4 g/cm3 and meant for protection of various facilities from radioactive radiation, instead of highly toxic metallic, lead, were prepared. Issues of improving the frost resistance of this new type of TPU were considered. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41481.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号