首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An Fe2O3 (10 wt%)/Al2O3 (90 wt%) catalyst prepared by a coprecipitation method was found to be effective for dehydrogenation of ethylbenzene to produce styrene in the presence of CO2 instead of steam used in commercial processes. The dehydrogenation of ethylbenzene over the catalyst in the presence of CO2 was considered to proceed both via a one-step pathway and via a two-step pathway. CO2 was found to suppress the deactivation of the catalyst during the dehydrogenation of ethylbenzene. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
3.
The energy required for a new process using CO2 for the dehydrogenation of ethylbenzene to produce styrene was estimated to be much lower than that of the present commercial process using steam. A Fe/Ca/Al oxides catalyst was found to exhibit high performance in the dehydrogenation of ethylbenzene in the presence of CO2. And the deactivation of the Fe/Ca/Al oxides catalyst was restrained by the action of CO2.  相似文献   

4.
《Catalysis communications》2007,8(9):1317-1322
Ga2O3–ZrO2 catalysts were prepared by a coprecipitation method. The catalysts were characterized by XRD, Raman, DRS, XPS, SEM, EDX, IR, NH3-TPD, CO2-TPD and N2 adsorption methods. Dehydrogenation of ethylbenzene and propane in the presence of CO2 over these catalysts has been investigated and compared. Ga2O3–ZrO2 catalysts exhibit different catalytic behavior for the two dehydrogenation reactions.  相似文献   

5.
CO2 reforming of methane was studied over modified Ni/Al2O3 catalysts. The metal modifiers were Co, Cu, Zr, Mn, Mo, Ti, Ag and Sn. Relative to unmodified Ni/Al2O3, catalysts modified with Co, Cu and Zr showed slightly improved activity, while other promoters reduced the activity of CO2 reforming. Mn-promoted catalyst showed a remarkable reduction in coke deposition, while entailing only a small reduction in catalytic activity compared to unmodified catalyst. The catalysts prepared at high calcination temperatures showed higher activity than those prepared at low calcination temperature. The Mn-promoted catalyst showed very low coke deposition even in the absence of diluent gas and the activity changed only slightly during 100 h operation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Alumina-supported V0.43Sb0.57 oxide (VSb/Al) and MgO-modified alumina-supported V0.43Sb0.57 oxide catalysts (VSb/MgnAl with Mg/Al atomic ratio, n = 0.1, 0.3 or 0.5) have been tested for the dehydrogenation of ethylbenzene with carbon dioxide as an oxidant. Their catalytic behaviors were interpreted by results of several catalyst characterization methods. The decrease in the surface acidity of the VSb/MgnAl catalysts due to modification of alumina with MgO favors the prolonged time-on-stream activities. However, the addition of relatively large amounts of MgO (n = 0.3 or 0.5) causes substantial decrease in their surface areas, reducibility of active vanadium oxide component and, consequently, ethylbenzene conversion. These negative factors did not become apparent for the most efficient VSb/Mg0.1Al system demonstrating high and stable catalytic activity.  相似文献   

7.
8.
The mixed metal oxides TiO2-Fe2O3 and ZrO2-Fe2O3 were examined as potential catalysts for the dehydrogenation reaction of ethylbenzene. The acidic and basic properties and surface area, pore volume and pore size distribution of these catalysts were measured. The catalytic activities can be correlated very well with the surface area and the acidity and basicity of ZrO2-Fe2O3 catalysts. However, for TiO2-Fe2O3 catalysts, the surface area, the amount of acidic and basic sites and TiFe2O5 crystallinity are all important factors affecting the catalytic activities for ethylbenzene dehydrogenation. A synergistic effect was found for the TiO2-Fe2O3 and ZrO2-Fe2O3 catalyst system and also for the TiO2-Fe2O3-ZrO2 system, i.e. the activities of these catalysts can be ranked in the following order: TiO2-Fe2O3-ZrO2>TiO2-Fe2O3 >ZrO2>Fe2O3>TiO2. Meanwhile, all of these catalysts showed higher activities than the conventional potassium-promoted iron catalysts.  相似文献   

9.
Oxidized diamond demonstrated excellent support for the dehydrogenation of light alkanes to alkenes in the presence of CO2. Oxidized diamond-supported Cr2O3 and V2O5 catalysts exhibited comparatively higher catalytic activities in the dehydrogenation of lower alkanes in the presence of CO2. In the dehydrogenation of propane, the oxidized diamond-supported Cr2O3 and V2O5 catalysts in the presence of CO2 afforded nearly twofold higher activities than that in the absence of CO2. The activity of the oxidized diamond-supported V2O5 catalyst in the dehydrogenation of propane increased with increasing reaction temperatures. Furthermore, in the dehydrogenation of n-butane and iso-butane, a promoting effect of CO2 on butane conversion and butenes yields was observed over the oxidized diamond-supported Cr2O3 and V2O5 catalysts, though the promotion effect was small.

UV-Vis analyses of the fresh and the reacted catalysts in the presence and absence of CO2 revealed that CO2 kept the surface V2O5 and Cr2O3 in a state of oxidation slightly higher than that in the absence of CO2.  相似文献   


10.
Ethylbenzene to styrene in the presence of carbon dioxide over zirconia   总被引:4,自引:0,他引:4  
ZrO2 itself was found be active for the dehydrogenation of ethylbenzene, especially in the presence of CO2, which was aimed to be utilized as an oxidant. This positive effect of CO2 was highly dependent on the crystalline phases of zirconia. The higher the tetragonal phase contained in ZrO2, the higher the ethylbenzene conversion and styrene selectivity that were obtained. Highly tetragonal ZrO2 was more active in oxidative dehydrogenation than monoclinic ZrO2. The differences of catalytic activities could be ascribed to the differences of the surface area and CO2 affinity related with surface basicity.  相似文献   

11.
The co-production of hydrogen and carbon nanotubes (CNTs) from the decomposition of ethanol over Fe/Al2O3 at different temperatures and feeding rates of ethanol was investigated systematically. The results indicated that Fe/Al2O3 was a quite active catalyst for the co-production of hydrogen and CNTs and that its activity and stability depended strongly on the Fe loading. Among all catalysts tested, 10 mol% Fe/Al2O3 was the most effective catalyst based on the ratio of hydrogen production, the total H2 yield, and the quality of the CNTs formed. The efficiency of hydrogen production from ethanol decomposition over 10 mol% Fe/Al2O3 reached a maximum of ∼80% at 800 °C and the yield of CNTs with well-oriented growth and uniform diameter was 141%. In addition, the reaction of hydrogen and CNTs co-produced from ethanol decomposition was proposed.  相似文献   

12.
Abstract

A series of Cu-K/Al2O3 catalysts were synthesized by wet impregnation technique. The reduced catalysts were further used for conversion of carbon dioxide to methane and carbon monoxide. Moreover, the fresh and used catalysts were characterized to investigate the changes in the surface morphology, metal dispersion, surface area, crystalline phases, and functional groups of studied catalysts. The SEM analysis of fresh and spent catalysts showed no remarkable difference in surface morphology with irregular shaped agglomerated particles. Furthermore, TEM micrographs presented the well distribution of metal catalyst over alumina support. The decrease in surface area from 115 to 77?m2/g for Cu1.62-K0.5/Al2O3 after reaction was related to sintering and oxidation of catalyst during reaction. XRD revealed the disappearance of some minor peaks which can be associated with the sintering of spent catalyst. FTIR also presented some new peak for spent catalyst which can be linked with metal oxides. Moreover, various reaction conditions of temperature (230, 400, and 600?°C), pressure (1 and 7?bar), and feed molar ratio of H2/CO2 (2:1 and 4:1) were investigated using different Cu loading (0, 1, 1.25, 1.62, and 4 weight percent). A maximum CO2 conversion of 63% with 39% CH4 selectivity was achieved by using Cu1.62-K0.5/Al2O3 at 600?°C, molar ratio of H2/CO2 4 under 7?bar. The presence of K on the surface of synthesized catalyst increased the CO2 conversion from 48% (Cu1/Al2O3) to 55% (Cu1-K0.5/Al2O3) at above mentioned reaction conditions which suggested the promoter effect of K during conversion of carbon dioxide.  相似文献   

13.
A series of alumina aluminum borate (AAB) with various Al/B molar ratios were prepared by the coprecipitation method. The supported rhenium oxide catalysts with various contents of Re2O7 were also prepared by the impregnation method with perrhenic acid. The catalytic activity and stability of Re2O7/AAB catalysts for the reaction of propylene metathesis were tested in a fixed-bed microreactor. It was found that Re2O7/AAB is more active, stable and regenerable than Re2O7/Al2O3 for propylene metathesis. The optimum Al/B molar ratio was found to be in the range of 4–10.  相似文献   

14.
《Catalysis communications》2007,8(7):1167-1171
Copper iron composite oxide catalysts have been prepared by co-precipitation method. The catalytic activity and stability of the catalysts on CO oxidation were evaluated by using a microreactor-GC system. The results indicated that the copper iron composite oxide catalysts exhibited obviously high stability and catalytic activity on CO oxidation at low temperature. The effect of the calcination temperature, the molar ratios of copper to iron, the specific surface areas and the particle sizes on the catalytic activity of the catalysts was investigated in this paper.  相似文献   

15.
Benzene hydroisomerization is among the promising processes converting benzene into methylcyclopentane (MCP), which is an environmentally friendlier, octane boosting component of motor fuels. Benzene hydroisomerization into MCP over the Pt/MOR/Al2O3 (MOR = mordenite) catalytic system is reported here. The dependence of the yield of the target product on the acidic properties of the support and platinum precursor ([Pt(NH3)4]Cl2 or H2PtCl6) have been investigated in order to optimize the catalyst composition. The acidic properties of the surface have been altered by introducing 30–95 wt % alumina into the support. Catalytic activity has been measured in the hydroisomerization of cyclohexane and a benzene (20 wt %) + n-heptane (80 wt %) mixture in a flow reactor at 250–350°C, 1.5 MPa, H2: CH = 3: 1, a cyclohexane LHSV of 6 h?1, a mixed feedstock LHSV of 2 h?1, a catalyst bed volume of 2 cm3, and catalyst pellet sizes of 0.25–0.75 mm. The most efficient catalyst for cyclohexane and n-heptane isomerization and benzene hydroisomerization is the platinum-containing catalyst (0.3 wt % Pt) whose support consists of 30 wt % MOR and 70 wt % Al2O3. The highest yield of the target products of isomerization in the presence of this catalyst is attained in the temperature range from 280 to 310°C, which is thermodynamically favorable for MCP formation from benzene. This indicates that this catalyst is promising for the hydroisomerization of benzene-containing gasoline fractions. Use of H2PtCl6, a readily available chemical, as the platinum precursor is favorable for commercialization of the catalyst and ensures price attractiveness in its industrial-scale manufacturing.  相似文献   

16.
A Cr/Al2O3 alkane dehydrogenation catalyst exhibits a maximum in ethylene yield during an ethane dehydrogenation cycle. Isotopic labelling experiments with monolabelled 13C-ethane and deuterium were used to elucidate whether the initial activity increase could be due to formation of an active, larger hydrocarbon intermediate on the surface. The results strongly indicate that this is not the case, and instead point to a traditional reaction cycle involving adsorption of ethane to form an ethyl species, followed by desorption of ethene and hydrogen. Transient kinetic data suggest that ethane adsorption is the rate-determining step of reaction.  相似文献   

17.
18.
The reduction of lean NOx using ethanol in simulated diesel engine exhaust was carried out over Ag/Al2O3 catalysts in the presence of H2O and SO2. The Ag/Al2O3 catalysts are highly active for the reduction of lean NOx by ethanol but the reaction is accompanied by side reactions to form CH3CHO, CO along with small amounts of hydrocarbons (C3H6, C2H4, C2H2 and CH4) and nitrogen compounds such as NH3 and N2O. The presence of H2O enhances the NOx reduction while SO2 suppresses the reduction. The presence of SO2 along with H2O suppresses the formation of acetaldehyde and NH3. By infrared spectroscopy, it was revealed that the reactivity of NCO species formed in the course of the reaction was greatly enhanced in the presence of H2O. The NCO species readily reacts with NO in the presence of O2 and H2O at room temperature, being converted to N2 and CO2 (CO). Addition of SO2 suppresses the formation of NCO species and lowers the reactivity of the NCO species. However, the reduction of NOx is still kept at high conversion levels in the presence of H2O and SO2 over the present catalysts. About 80% of NOx in the simulated diesel engine exhaust was removed at 743 K. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
The hydrogenation of acetone to isopropanol has been studied in the vapour phase over Pt/Al2O3 catalysts. The rate law obtained at a total pressure of 1 atm and temperatures between 303 and 363 K is of the form V=kP0aP1/2H exp (-44 kJ mol?1 RT?1). The kinetic results are consistent with a Langmuir-Hinshelwood hydrogenation mechanism involving a half hydrogenated species and a non-competitive chemisorption of acetone and hydrogen on the platinum surface. The specific activity (calculated per platinum surface atom) has been found to be scarcely dependent on the platinum particle size. It is suggested that the chemisorption sites are made of a very small ensemble of platinum atoms.  相似文献   

20.
The ammonia method has been successfully used for preparing thermostable and well dispersed alumina‐supported catalysts with a surface average size of cobalt particle D s= 5.7 nm. The disproportionation reaction of CO over this Co/Al2O3 catalyst and a similar Co/SiO2 catalyst leads to the formation of carbon nanotubes demonstrating the same morphology. The amount of nanotubes over Co/Al2O3, however, is much larger than that obtained over Co/SiO2, because of a faster ageing in the latter solid. Similar support effects have already been reported for other catalytic reactions involving carbon oxides. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号