首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了解超临界循环流化床(CFB)锅炉炉膛中悬吊屏平行管束内工质流动不均匀性,基于流体模化理论,设计超临界工质平行管束试验系统,以R-134a模化超临界水蒸气进行试验研究。试验在工质质量流率500~700 kg/(m2·s),入口温度503~543 K,入口压力4.0~4.3 MPa,CFB颗粒浓度3.9~15.0 kg/m3下进行,研究了上述参数对平行管束中工质流动不均匀性的影响。结果表明:影响工质在管束内流动不均匀性的主要因素包括管外的换热特性、管内的换热特性和管内压降;工质入口温度增加,其在平行管束内的流动不均匀性降低;当工质入口压力高于其临界压力时,入口压力变化对工质整体流动不均匀性影响较小;工质质量流率增加,其流动不均匀性增加;管束外侧颗粒浓度增加,工质流动不均匀性增强;试验条件下,平行管束两侧流动不均系数相对较小。  相似文献   

2.
对矩形非均匀热流密度分布下太阳能槽式吸热管内流固耦合传热过程进行了数值模拟,得到了吸热管壁温度分布及周向和径向温度梯度。结果表明,太阳能吸热管在非均匀热流作用下其管壁温度分布不均匀,周向温度梯度在受热和非受热交界面附近有剧烈变化。吸热管热流密度的增加会导致壁面温度梯度增大,而管内换热的增强及热流密度的分布特性对温度梯度有影响。  相似文献   

3.
在压力9~28MPa,质量流速600~1200kg/(m2s),内壁热负荷200~500kW/m2的工况范围内,研究了Φ38.1×7.5mm倾斜上升内螺纹管(倾角α=19.5o)中水的传热特性。试验结果表明:在亚临界压力区,内螺纹管传热强化作用明显,有效地抑制了膜态沸腾的发生,但在近临界压力区此传热强化作用有所减弱。超临界压力区拟临界温度附近,内螺纹管内壁面与流体之间的温差较之前有所增加,但是此增幅远没有亚临界压力区发生传热后的壁温飞升幅度大。随着系统压力接近临界压力,拟临界点附近管壁与工质的温差显著增加。在超临界压力区,不同的质量流速与热负荷比例下,在大比热区内螺纹管内流体传热可能被强化也可能被恶化。在超临界压力下,由于螺旋内槽的旋流作用减弱了自然对流的影响,倾斜上升内螺纹管内壁温度的周向分布比较均匀。在高焓值区内螺纹管的周向最大温差只有10℃左右。文中提出了在考虑大比热区工质物性剧烈变化对传热影响的情况下,倾斜上升内螺纹管顶部内壁传热系数的试验关联式。  相似文献   

4.
为解决压降效率惩罚问题,大容量超临界二氧化碳(supercritical CO2,sCO2)锅炉需采用模块化设计。由于sCO2锅炉入口工质温度高、管内换热系数低,炉膛冷却壁极易超温,冷却壁安全性为锅炉设计的关键难点。锅炉中,烟气侧热负荷分布与sCO2侧参数与管排结构具有各自的分布特点。对烟气侧与sCO2侧进行适当的匹配可有效降低冷却壁壁温。该文以1000MW等级二次再热sCO2锅炉为例,建立耦合热力学循环与锅炉模块流动传热的数值模型,分析不同布置方案下冷却壁壁温,提出降低大容量sCO2锅炉冷却壁壁温的烟气侧与sCO2侧匹配策略。结果表明,在烟气全温区范围内,遵循低温工质匹配高热负荷原则,冷却壁分成6个模块的方案可有效降低冷却壁壁温;在炉膛内,遵循高许用热负荷匹配高热负荷原则,调整冷却壁模块的布置,可进一步降低冷却壁壁温。该文提出的匹配策略显著降低了冷却壁壁温,可为模块化锅炉的设计与布置提供一定参考。  相似文献   

5.
超临界二氧化碳布雷顿循环与铅冷快堆的结合被认为是最为理想的动力循环之一,系统通过中间换热器传递热量,其性能影响着整个发电系统的高效与安全运行。由于超临界二氧化碳和液态铅铋合金(LBE)物理性质和热输运性质差异显著,对称式结构无法匹配两侧工质的换热要求,构建了1种非对称式紧凑式耦合换热器,采用数值模拟方法研究了超临界二氧化碳与液态铅铋合金耦合换热特性。结果表明:提升冷侧流体入口速度会显著增强换热;增加热侧LBE入口速度时,总换热系数先降低后增加;提升换热器冷热流体入口温度,换热器的换热系数先减小后增大,存在最优值;在拟临界区内,强浮力作用会大幅提升冷侧换热,而加速效应则抑制换热。  相似文献   

6.
通过耦合水冷壁的烟气侧和工质侧的换热模型,获得超超临界条件下水冷壁管内工质和管壁的温度分布情况。设置火焰中心和工质流量的偏差变量,研究其对600℃和700℃等级锅炉水冷壁管壁温度安全的影响。通过模型的计算结果与600℃等级的超超临界机组测试值对比,验证模型的准确性。计算结果表明:耦合模型计算温度和实测数据有较好的一致性;对于600℃等级锅炉的水冷壁,流量对壁面温度最高值的影响明显高于火焰中心偏移的作用;700℃等级超超临界锅炉水冷壁管壁和工质的温度分布规律和600℃等级锅炉的变化趋势基本一致。管壁的峰值温度约为619℃,远远超过600℃等级超超临界锅炉管材的允许温度;推荐管材的许用温度为650℃。  相似文献   

7.
该文阐述了600MW超临界压力锅炉螺旋管圈水冷壁传热和壁温计算的研究结果。相应编制了螺旋管圈水冷壁的壁温计算程序,利用程序进行了不同负荷下水冷壁出口工质温度、水冷壁受热面不同位置处的金属壁温、内壁放热系数、流体温度及焓值分布等的计算。图26表2参7  相似文献   

8.
在超临界二氧化碳布雷顿循环等热质循环输运过程中,存在超临界压力下冷热2股二氧化碳间的流动传热过程,其传热特性是影响相应系统性能的关键。本文以套管换热器为原型,对超临界压力下的冷热二氧化碳间的传热特性开展了数值模拟研究,分析了热流体入口温度、冷热流体入口流量对于传热特性的影响和周向的传热特性分布。结果表明:随着热流体入口温度的变化,热侧和冷侧的局部换热系数产生相应的变化和波动,同时冷侧局部换热系数在主流温度接近拟临界温度时,会出现明显的传热强化现象;另外,热侧二氧化碳质量流量的上升,会使得热侧换热系数提高,冷侧换热系数峰值减小且向冷流体入口处移动,而随着冷侧质量流量的上升,冷侧换热系数峰值增大且向冷流体出口处移动。这是由于套管换热器为水平布置,传热特性在周向上产生了明显的不均匀现象,其与流体密度变化在重力作用下的局部湍流效应增强和削弱有关。本研究对新型二氧化碳布雷顿循环等热质循环输运过程的开发和设计具有指导意义。  相似文献   

9.
超临界二氧化碳布雷顿循环有着全流量回热、回热量大的特点,使得其进入热源的工质温度远高于同参数的蒸汽朗肯循环。与以水为工质的传统超临界锅炉相比,超临界二氧化碳锅炉具备入口工质温度高,再热气吸热比例较高,锅侧流体远离大比热区等特点。因此,深入研究超临界二氧化碳锅炉气动力特性(对应水工质锅炉的水动力特性)对煤基超临界二氧化碳发电技术的发展意义重大。以300MW,600℃等级的超临界二氧化碳锅炉为例,通过数值模拟和气动力建模计算相结合的方法,对垂直管圈气冷壁和再热气冷壁的气动力特性进行了详细计算和分析,获得了相应的流量分配规律以及气温和壁温分布特点。  相似文献   

10.
石硕  庄晓如  徐心海 《热力发电》2020,49(10):87-92
为分析聚光太阳能热发电中吸热器内超临界二氧化碳(S-CO2)在高温非均匀壁面热流密度分布下的对流换热特性,采用ANSYS Fluent软件建立了管排式吸热器的三维数值模型,对其中S-CO2对流换热特性进行数值仿真,并考虑了吸热器与外界环境的辐射和对流换热,分析了吸热管半周均匀受热、半周周向均匀轴向高斯受热和半周周向余弦轴向高斯受热3种非均匀壁面热流密度分布的影响。仿真结果表明:外界环境的辐射和对流换热对吸热器壁面温度影响较大,相较于未考虑外界环境的辐射和对流换热,考虑辐射和对流换热的壁面最高温度下降6.84%;3种壁面热流密度分布中半周周向余弦轴向高斯受热的吸热器出口温度和壁面最高温度均最高,其壁面最高温度比半周均匀受热高353.4 K;非均匀壁面热流密度分布虽然对吸热器内流体流量分配不均匀性的改善不明显,但可明显削弱流量分配不均造成的各吸热管流体温度偏差的影响。  相似文献   

11.
界限质量流速G0是直流锅炉垂直管圈水冷壁设计的一个关键参数。当垂直管圈水冷壁支管内的质量流速小于G0时,水冷壁将呈现正流量响应特性。为了系统研究G0的影响因素及它们对G0的影响规律,文中建立亚临界/超临界压力条件下垂直管内工质流动压降的计算模型,推导出均匀受热垂直上升管内G0的解析表达式,揭示了界限质量流速与加热条件和管子结构参数的函数关系。在此基础上,结合两相流流动特性参数的经验关联式,系统分析G0在不同条件下的变化规律。结果表明,进出口工质温度、工质压力、管子内径和沿程摩阻系数、管长对G0均有一定影响。在几何结构不变时,降低工质进、出口温度或者提高工质工作压力都会使得G0增大。在进、出口工质温度和工作压力不变时,减小管子内径、增大沿程摩阻系数或是减小管长会使得G0减小。  相似文献   

12.
电站锅炉膜式水冷壁向火侧危险点壁温的在线监测很重要,特别是对超(超)临界压力锅炉,而膜式水冷壁向火侧危险点壁温的在线监测一直很难。基于温度场数值模拟结果本文提出一种针对超(超)临界压力电站锅炉水冷壁间接测量向火侧温度方法。首先用数值模拟方法计算了大量工况下水冷壁截面温度场分布,然后根据数值模拟结果拟合背火侧三个特征点温度差值与向火侧两个危险点温度的关系式,通过监测水冷壁背火侧三个特征点温度,根据关系式即可间接在线测量向火侧危险点温度。  相似文献   

13.
超临界水冷堆类四边形子通道内超临界水的传热试验研究   总被引:1,自引:0,他引:1  
在压力23~28 MPa、质量流速700~1 300 kg/(m2·s)、热流密度200~800 kW/m2的参数范围内,对超临界水冷堆堆芯棒径D=8 mm、栅距比P/D=1.2的类四边形子通道内超临界水的传热特性及管壁温度分布进行了试验研究,分析了压力、热流密度和质量流速对管壁温度及传热特性的影响,并与环形通道内超临界水的传热特性进行了对比。试验结果表明:在超临界压力区,类四边形子通道管壁温度随着焓值的增大而逐渐上升,换热系数在拟临界点附近达到峰值,低焓值区的换热系数比高焓值区大;随压力增大,壁面温度升高,换热系数峰值减小;热负荷的增大和质量流速的减小均会使壁面温度升高,换热系数减小,削弱传热强化。与环形通道对比发现,在低焓值区,类四边形通道与环形通道内壁温度和换热系数相差不大;超临界水在类四边形子通道内比在环形通道内更容易渡过拟临界区,拟临界区对类四边子形通道的影响比对环形通道的影响小。  相似文献   

14.
以某330 MW锅炉为例,通过数值计算的方法分析研究了梯形鳍片膜式水冷壁的传热特性。计算了不同水冷壁管内工质温度、不同水冷壁管内侧对流换热系数和不同水冷壁向火侧接受的平均辐射热负荷下水冷壁管子特定点的温度,重点研究了水冷壁管子背火侧特定点的温差。研究结果表明:水冷壁管子背火侧特定点温差与水冷壁管内工质温度关系不大,水冷壁管子背火侧特定点温差随着管内侧对流换热系数的增大而减小,水冷壁管子背火侧特定点温差与水冷壁向火侧接受的辐射平均热负荷成正相关关系。  相似文献   

15.
超临界压力直流锅炉蒸发受热面壁温监测主要依靠布置在炉膛外的少量热电偶,炉内管壁温度缺乏有效的监测手段。通过对超临界压力直流锅炉蒸发受热面传热、炉膛热流量分布、蒸发管参数建模以及受热管内强制对流沸腾换热的模拟,实现了全炉膛蒸发受热面管壁温度和燃煤发热量的在线测量。开发的超临界压力直流锅炉炉膛受热面壁温监测预报系统在一台1 000 MW应用成功。采用试验方法测试了系统的性能,结果表明,炉外壁温的测量值与预测值的偏差在-2.47%~+3.83%,煤收到基低位发热量的监测误差在-6.99%~+5.32%。  相似文献   

16.
为探究不同影响因素对超临界水及超临界CO2两种超临界流体换热系数的影响程度,通过建立灰色关联度计算模型,对提取的超临界水及超临界CO2试验数据进行分析,对比不同管道直径、压力、质量流速、入口温度等影响因素对超临界水及超临界CO2换热系数的关联程度大小.研究结果表明:各因素对超临界水换热系数的影响程度为:质量流速>入口温...  相似文献   

17.
在600MW锅炉机组水冷壁热力试验的基础上,利用有限元分析的方法对低倍率锅炉膜式水冷壁管壁温度分布随传热工况的动态变化进行了分析。导致水冷壁管壁温度波动的最根本的原因是管内传热恶化;单面受热水冷壁在管内发生传热恶化时其向火侧管内外壁温差随时间的波动较小,而水冷壁周向温差则随向火侧外壁的壁温波动而剧烈波动。  相似文献   

18.
在600MW锅炉机组水冷壁热力试验的基础上,利用有限元分析的方法对低培率锅炉膜式水冷壁管壁温度分布随传热工况的动态变化进行了分析,导致水冷壁管壁温度波动的最根本的原因是管内传热恶化,单面受热水冷壁在管内发生传热恶化时其向火侧管内外壁温差随时间的波动较小,而水冷壁周向温差则随向火侧外壁的壁温波动而剧烈波动。  相似文献   

19.
超临界循环流化床(circulating fluidized bed,CFB)燃烧技术作为一种具有综合性优点的技术,被广泛应用,但其炉膛中屏式过热器爆管泄漏问题频繁发生,故有必要对其水动力特性及吸热量偏差特性进行研究分析。根据针对超临界CFB锅炉炉膛内屏式过热器所建立的复杂流动网络系统的数学模型,及屏式过热器出口汽温分布实炉测量数据,对热负荷进行反推,计算分析了河曲电厂350MW超临界CFB锅炉以及白马电厂600MW超临界CFB锅炉中屏式过热器流量分配、出口汽温分布及壁温特性,并计算得到了屏式过热器中吸热量热偏差系数分布。计算结果表明,屏式过热器吸热量及热偏差系数在近壁侧、近火侧较小,在受热面中部则二者较大,这是由于各处烟气颗粒浓度的不同而影响传热造成,对吸热量及传热系数的分析研究对超临界CFB锅炉的设计及优化改造提供了理论依据。  相似文献   

20.
超临界及超超临界锅炉水冷壁壁温偏差研究   总被引:1,自引:2,他引:1  
樊泉桂 《中国电力》2006,39(5):59-63
根据国内超临界锅炉的实际运行数据和超超临界锅炉的设计数据,研究了影响其水冷壁壁温偏差的主要因素。重点研究了水冷壁受热偏差、质量流率、工质焓增、变压运行、工质热物理特性等对于螺旋管圈水冷壁和垂直管屏水冷壁壁温偏差的影响关系;分析了控制超超临界锅炉水冷壁壁温偏差的技术措施:采用内螺纹管,降低水冷壁管外烟气侧热负荷和热偏差,适度控制质量流率的裕量,合理控制下辐射区和上辐射区水冷壁的工质焓增,采用节流圈调节流量偏差和利用垂直管屏在低质量流率下的正流量补偿特性等措施,可有效控制超临界和超超临界锅炉水冷壁的壁温偏差。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号