共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Poly(lactic acid) (PLA) is a well known biodegradable thermoplastic with excellent mechanical properties that is a product from renewable resources. However, the brittleness of PLA limits its general applications. Using epoxidized soybean oil (ESO) as a novel plasticizer of poly(lactic acid), the composite blend with the twin‐screw plastic extruder at five concentrations, 3, 6, 9, 12, and 15 wt %, respectively. Compared with pure PLA, all sets of blends show certain improvement of toughness to different extents. The concentration with 9 wt % ESO increases the elongation at break about 63%. The melt flow rates of these blends with respect to different ESO ratio have been examined using a melt flow indexer. Rheological behaviors about shear viscosity and melt strength analysis are discussed based on capillary rheology measurements. The tensile strength and melt strength of the blends with 6 wt % ESO simultaneity reach the maximums; whereas the elongation at break of the blends is the second highest level. ESO exhibits positive effect on both the elongation at break and melt strength. The results indicate that the blend obtained better rheological performance and melt strength. The content of 6 wt % ESO in PLA has been considered as a better balance of performance. The results have also demonstrated that there is a certain correlation between the performance in mechanical properties and melt rheological characterization for the PLA/ESO blends.© 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
3.
Alfredo Carbonell‐Verdu David Garcia‐Sanoguera Amparo Jordá‐Vilaplana Lourdes Sanchez‐Nacher Rafael Balart 《应用聚合物科学杂志》2016,133(27)
The use of epoxidized cottonseed oil as plasticizer for poly(vinyl chloride) was studied. The plasticizer content was set to 70 phr and the optimum isothermal curing conditions were studied in the temperature range comprised between 160 and 220 °C with varying curing times in the 7.5–17.5 min range. The influence of the curing conditions on overall performance of cured plastisols was followed by the evolution of mechanical properties (tensile tests with measurements of tensile strength, elongation at break, and modulus), change in color, surface changes of fractured samples by scanning electron microscopy (SEM), thermal transitions by differential scanning calorimetry, and migration in n‐hexane. The optimum mechanical features of cured plastisols are obtained for curing temperatures in the 190–220 °C range. For these curing conditions, fractography analysis by SEM gives evidences of full curing process as no PVC particles and free plasticizer can be found. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43642. 相似文献
4.
5.
A series of triglyceride plasticizers were prepared from glycerol, acetic acid, and benzoic acid through a two‐step reaction to develop potential uses of glycerol. The optimum reaction conditions were determined by the esterification of glycerol and acetic acid to produce glyceryl triacetate. When the molar ratio of glycerol to benzoic acid to acetic acid was 1:1:3.5, a novel plasticizer triglyceride mixture (GTM) was successfully synthesized; it had a good plasticizing effect on poly(vinyl chloride) (PVC). The elongation at break of PVC composites containing 80 phr GTM increased around 350%; the corresponding hardness (Shore D) and tensile strength decreased to around 35 D and 20 MPa, respectively. Moreover, the glass‐transition temperature (Tg) of PVC composites containing 40 phr GTM decreased to around 50°C. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
6.
Epoxidized soybean oil (ESBO), is one of the most commonly used epoxides because of its typical combined roles as a plasticizer and heat stabilizer. In this study, a novel plasticizer of poly(vinyl chloride) (PVC) resins, epoxidized sunflower oil (ESO), was synthesized, and its performance was evaluated. ESO was designed to act as a coplasticizer and a heat stabilizer like ESBO. ESO is used as organic coplasticizer for plasticized PVC containing Ca and Zn stearates as primary stabilizers and stearic acid as lubricant. Di‐(2‐ethylhexyl) phthalate (DEHP), a conventional plasticizer for PVC, was partially replaced by ESO. Mechanical properties (tensile and shore D hardness) were investigated. The performance of ESO to ESB0 (20 g) for comparison, indicated that ESO could be used as secondary plasticizer for PVC in combination with DEHP. All mechanical and dynamical properties of plasticized PVC sheets varied with the oxirane oxygen of the ESO. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
7.
Castor oil is a renewable resource that has potential uses as an environmental friendly material for a range of applications. In recent years, much efforts have been driven to develop alternate plasticizer for medical and commodity plastics due to growing concerns about dioctyl phthalate (DOP) for flexible poly(vinyl chloride) (PVC). In this study, a bio‐based plasticizer was synthesized by a two‐step esterification reaction of castor oil fatty acid (COFA) with benzyl alcohol and octanoic acid in the presence of catalyst (dibutyl tin dilaurate). The structure of the octanoic ester (OE) was confirmed by proton nuclear magnetic resonance, Fourier transform infrared spectroscopy, acid value, and hydroxyl value. OE was used as a coplasticizer in PVC for partial replacement of DOP. The addition of OE exhibited good incorporation and plasticizing performance in the PVC sheets. Incorporation of OE resulted in good plasticizing, tensile strength, percentage elongation, exudation, thermal stability, and chemical resistance because of the presence of long carbon chains of COFA. Differential scanning calorimetry (DSC), thermogravimetric analysis, and color measurements were also performed to evaluate the effect of OE. With the increase in OE, DSC and hardness results showed marginal deviation from those obtained for DOP‐plasticized sheets. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40354. 相似文献
8.
The poly(vinyl chloride) (PVC) industry plays an important role in today's total plastics industry. The major volume of PVC is used as soft and plasticized PVC. PVC applications consume approximately 80% of the total production of plasticizers. Most of the common plasticizers are aromatic esters of phthalic acid. In the majority of countries, phthalate plasticizers are banned due to their carcinogenic properties. The concern raised about toxicity led to a large demand for bio‐based non‐toxic plasticizers. Hence, there is an increasing interest in replacing the phthalate plasticizers with those produced from simple bio‐based materials. Dehydrated castor oil fatty acid (DCOFA) is a renewable resource which can be esterified and used as an environment friendly plasticizer for PVC. Benzyl ester (BE) was prepared by reacting DCOFA with benzyl alcohol in the presence of catalyst at 170–180 °C. Esterification was further confirmed by acid value, hydroxyl number, 1H NMR and Fourier transform IR spectroscopy. The modified plasticizer was used in various proportions as a co‐plasticizer in PVC for partial replacement of dioctyl phthalate (DOP). With an increase in the proportion of BE in PVC samples, a good plasticizing performance was observed. The incorporation of BE also resulted in a reduction in viscosity and viscosity pick‐up and improved mechanical, exudation, thermal degradation and chemical resistance properties. The presence of BE showed a reduction in the whiteness index due to presence of conjugated double bonds in the structure. The results of DSC, XRD and Shore hardness studies showed no significant variation in properties compared with those of DOP‐plasticized sheets and thus we can conclude that BE can be used as a co‐plasticizer in PVC. © 2013 Society of Chemical Industry 相似文献
9.
Effect of ketal group in castor oil acid-based plasticizer on the properties of poly(vinyl chloride)
Huichao Zhu Jianjun Yang Mingyuan Wu Qingyun Wu Jiuyi Liu Jianan Zhang 《应用聚合物科学杂志》2021,138(43):51274
Two castor oil acid esters containing a ketal or ketone group (KCL or CL), as alternative plasticizers for poly(vinyl chloride) (PVC), were prepared. The structures were confirmed by 1H NMR and FTIR spectroscopies. The effects of the presence of a ketal or ketone group in these compounds on PVC plasticization were examined. The DMA and SEM results showed that both plasticizers were miscible with PVC and exhibited excellent plasticizing properties, compared to those of dioctyl phthalate (DOP). The PVC plasticized by KCL displayed a lower Tg value of 20.6 ° C, which was lower than that of PVC plasticized with DOP (22.3 ° C) and PVC plasticized with CL (40.5 ° C). Tensile tests indicated that PVC plasticized using KCL showed a 37% higher of elongation at break than PVC plasticized by CL and 30% higher than PVC plasticized by DOP. The plasticizing mechanism was also investigated. Moreover, exudation, volatility, and extraction tests, along with TGA indicated that the presence of ketal groups effectively improved the migration resistance of plasticizer and the thermal stability of PVC blends. Taken together, introducing ketal groups into plasticizer might be an effective strategy for improving its plasticizing efficiency. 相似文献
10.
Synthesis and application of a natural plasticizer based on cardanol for poly(vinyl chloride) 下载免费PDF全文
A natural plasticizer with multifunctional groups, similar in structure to phthalates, cardanol derivatives glycidyl ether (CGE) was synthesized from cardanol by a two‐step modification process and characterized by FT‐IR, 1HNMR, and 13CNMR. The resulting product was incorporated to PVC (CGE/PVC), and plasticizing effect was compared with PVC incorporated with two kinds of commercial phthalate ester plasticizers bis (2‐ethylhexyl) benzene‐1,4‐dicarboxylate (DOTP) and diisononyl phthalate (DINP). Dynamic mechanical analysis and mechanical properties testing of the plasticized PVC samples were performed in order to evaluate their flexibility, compatibility, and plasticizing efficiency. SEM was employed to produce fractured surface morphology. Thermogravimetric analysis and discoloration tests were used to characterize the thermal stabilities. Dynamic stability analysis was used to test the processability of formulations. Compared with DOTP and DINP plasticized samples, CGE/PVC has a maximum decrease of 9.27% in glass transition temperature (Tg), a maximum increase of 17.6% in the elongation at break, and a maximum increase of 31.59°C and 25.31 min in 50% weight loss (T50) and dynamic stability time, respectively. The obtained CGE also has slightly lower volatility resistance and higher exudation resistance than that of DOTP and DINP. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42465. 相似文献
11.
Synthesis and application of a novel cardanol‐based plasticizer as secondary or main plasticizer for poly(vinyl chloride) 下载免费PDF全文
A novel plasticizer based on cardanol, hydrogenated cardanol glycidyl ether acetic ester containing phosphaphenanthrene group (HCGEP), was prepared and incorporated into poly(vinyl chloride) (PVC) for the first time. The molecular structure was characterized with Fourier transform infrared and 1H NMR spectroscopies. The thermal degradation behavior and flame retardant performance of PVC films with HCGEP as secondary or main plasticizer were investigated using thermogravimetric analysis, combustion tests, limiting oxygen index tests and morphological analysis of residues. Furthermore, the mechanical properties of PVC films were examined based on the results of tensile testing. The results were compared to those of the petroleum‐based plasticizer dioctyl phthalate. With the substitution of dioctyl phthalate with HCGEP, PVC films exhibited high thermal stability and better flame retardant performance. The tensile test results showed that the addition of HCGEP could endow PVC resin with well‐balanced properties of flexibility, strength and hardness. © 2017 Society of Chemical Industry 相似文献
12.
Evaluating effects of biobased 2,5‐furandicarboxylate esters as plasticizers on the thermal and mechanical properties of poly (vinyl chloride) 下载免费PDF全文
We synthesized 2,5‐furandicarboxylate esters [i.e., dibutylfuran‐2,5‐dicarboxylate, diisoamylfuran‐2,5‐dicarboxylate, and di(2‐ethylhexyl)furan‐2,5‐dicarboxylate] and investigated their potential application as plasticizers of commercial poly(vinyl chloride) (PVC) products. Fourier transform infrared analysis, mechanical tests, scanning electron microscopy investigation, differential scanning calorimetry analysis, dynamic mechanical thermal analysis, thermogravimetric analysis (TGA), melt flow rate (MFR) measurement, and plasticizer migration measurements were used to the evaluate the comprehensive properties of the blended products. The results of the tensile tests demonstrate that the blends exhibited antiplasticization and flexible plastic characteristics at 10 and 50 phr in PVC, respectively. Moreover, flexural and impact test data indicate that the three types of blends exhibited a similar tendency: the hardness decreased continuously as the amount of plasticizer increased. Their morphology indicated that all of the plasticizers had good compatibility with PVC. The resulting glass‐transition temperature of the investigated plasticizers was lower than that of pure PVC, and reduction was largest for the plasticizer with the highest molecular weight. TGA revealed that the thermal degradation of blended polymers occurred in three stages and that all of the blends were stable up to 180°C. Finally, the MFRs of all of the specimens indicated that the addition of a higher concentration of lower molecular weight biobased esters resulted in improved fluidity, but these compounds migrated more easily from the blends. Hence, 2,5‐furandicarboxylic acid derived from biomass has potential as a plasticizer. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40938. 相似文献
13.
14.
15.
A series of bio-based diester plasticizers with various alkyl chain asymmetry and the same molecular weight were designed and synthesized, using renewable 5-hydroxymethyl-2-furancarboxylic acid (HFCA) as the raw material. The chemical structures of the HFCA-based plasticizers were characterized by Fourier transform infrared and nuclear magnetic resonance (1H NMR and 13C NMR). Besides, the influence of alkyl chain asymmetry on plasticization properties of the HFCA-based plasticizers in poly(vinyl chloride) (PVC) blends was also investigated. It was found that increasing the alkyl chain asymmetry of the diester plasticizer and keeping the molecular weight unchanged simultaneously could further improve its plasticizing efficiency, without sacrificing its volatility resistance and exudation resistance. The results showed that this study provided a new approach for further optimizing the overall properties of the asymmetric diester plasticizers. 相似文献
16.
Jie Chen Zengshe Liu Kui Wang Jinrui Huang Ke Li Xiaoan Nie Jianchun Jiang 《应用聚合物科学杂志》2019,136(9):47142
Epoxidized castor oil-based diglycidyl-phthalate (ECODP) was synthesized and incorporated into poly(vinyl chloride) (PVC) for the first time. The chemical structure of the ECODP was confirmed. The plasticizing effects of ECODP as a replacement for commercial plasticizer dioctyl phthalate (DOP) were investigated. The thermal stability and mechanical properties of PVC films before and after aging were investigated using thermogravimetric analysis (TGA), TGA-FTIR analysis, dynamic mechanical analysis (DMA), and tensile tests. The results indicated that PVC films plasticized with ECODP significantly improved thermal stability, compatibility, and flexibility. When DOP was substituted with ECODP completely, the initial decomposition temperature, 5, 10, 50, and 70% mass loss temperatures (Ti, T5, T10, T50, and T70) increased by 24.7, 38.9, 32.0, 30.3, and 102.7 °C, respectively. The functional mechanism of the ECODP as a thermal stabilizing plasticizer and the plasticization mechanism of PVC composites were also investigated. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47142. 相似文献
17.
Stress relaxation modulus data, Er(t), have been determined between ?70 and +170°C on blends of three samples of poly(vinyl chloride) of different molecular weights with di-2-ethylhexyl adipate, di-2-ethylhexyl phthalate, epoxidized soybean oil, and a poly(propyl adipate), respectively. The relaxation modulus-time–temperature data could be combined into master curves. However, probably owing to the finite contributions of the crystalline phase to the elastic properties, time–temperature superposition is here just marginally valid, and the master curves are only crude, yet still useful approximations. Combination of the present data with the accumulated published information suggests that the viscoelastic properties of plasticized poly(vinyl chloride) are determined primarily by the glass transition temperàture of the plasticizer, the compatibility of polymer and plasticizer, and probably also by the crystallites (as crosslinks). The exact role of the crystallites will remain elusive until the advent of plasticized poly(vinyl chloride) with controlled crystallinity. 相似文献
18.
Linear and branched poly(butylene adipate)s (PBA) with molecular weights ranging from 2000 to 10,000 g/mol, and a branching agent content between 0 and 1.8%, were solution cast with poly(vinyl chloride) (PVC) to form 50‐ to 60‐μm thick flexible films. Dry films were analyzed by tensile testing, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and optical microscopy (OM) to study the effects of molecular weight and branching on the plasticizing efficiency of the polyester. PBA formed a semimiscible two‐phase system with PVC, where the amorphous part exhibited a single glass transition temperature. The degree of crystallinity for the polyester, surface composition, and mechanical properties of the films depended on the blend composition, molecular weight, and degree of branching of the polyester. Plasticizing efficiency was improved by higher degree of branching. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2180–2188, 2006 相似文献
19.
Ewa Langer Sylwia Waśkiewicz Krzysztof Bortel Marta Lenartowicz-Klik Sebastian Jurczyk 《Iranian Polymer Journal》2017,26(2):115-123
In this study, chemical recycling products of waste poly(ethylene terephthalate) with oligoesters were used as new plasticizers for poly(vinyl chloride) (PVC). The preparation conditions of the dry blend mixtures of the suspension PVC containing synthesised plasticizers were similar to the conditions of the preparing mixtures with commercial plasticizers. The plasticization efficiency of PVC plasticizers was then examined by analysis of the mechanical, physical and chemical properties, as well as the thermal resistance and migration of plasticizer molecules from polymer matrix. Test results proved that compositions with synthesised oligomeric plasticizers possessed similar or better properties than those containing commercial oligomeric plasticizers and much better properties than those having monomeric plasticizers. Thermal stabilities of the proposed plasticizers were higher than those of the commercial plasticizers either monomeric (bis(2-ethylhexyl)phthalate) or oligomeric, despite the fact that the synthesised oligoesters did not contain any antioxidant. The best properties, especially low volatility, very good mechanical properties, low migration were resulted of the transesterification of the waste PET with oligoesters based on adipic acid, triethylene glycol and 2-ethylhexanol which were selected as plasticizers synthesised on the technical scale. The tested plasticized PVC compositions possessed very good tear resistance, tensile strength, decrease of weight loss after 168 h at 80 °C and low migration. Processing properties of PVC compositions containing these synthesised plasticizers confirmed their effectiveness in these compositions for extrusion process. 相似文献
20.
We use a poly(vinyl chloride) (PVC) gel and an electrode to fabricate adaptive microlens arrays (MLAs). The electrode has a zoned-array pattern. By applying a direct current voltage to the electrode, the PVC gel on each zoned electrode exhibited the character of a lens. The imaging of the MLA can be analyzed using either an optical microscope or a beam profiler or both. The topography of the PVC gel can be measured using an optical surface profiler. Compared to the imaging and focusing, the topographic map can discover additional information about the performances of the MLA. For example, the focal length of each lens in the MLA can be calculated precisely, and the aberration of the MLA can also be evaluated. Results show that the surface profile is an important factor for characterizing the performance of PVC-gel-based MLA. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47407. 相似文献