首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Composite materials based on an ethylene-acrylic acid (EAA) copolymer and 20 wt% cellulose fibers were compounded by two runs in a twin-screw extruder. The composite material with cellulose fibers (CF) and a reference of unfilled EAA were injection molded into plaques using three different temperature profiles with end zone temperatures of 170°C, 200°C, and 230°C. The injection molded samples were then characterized in terms of their mechanical properties, thermal properties, appearance (color and gloss), and surface topography. The higher processing temperatures resulted in a clear discoloration of the composites, but there was no deterioration in the mechanical performance. The addition of cellulose typically gave a tensile modulus three times higher than that of the unfilled EAA, but the strength and strain at rupture were reduced when fibers were added. The processing temperature had no significant influence on the mechanical properties of the composites. Gloss measurements revealed negligible differences between the samples molded at the different melt temperatures but the surface smoothness was somewhat higher when the melt temperature was increased. In general, addition of the cellulose to the EAA reduced the gloss level and the surface smoothness. POLYM. ENG. SCI., 60:5–12, 2020. © 2019 Society of Plastics Engineers  相似文献   

2.
High-strength regenerated cellulose/ZnAl-layered double hydroxides (LDH) composite membranes (RCL) with good mechanical and antibacterial performance were developed by stirring vigorously cellulose and LDH in NaOH/urea aqueous solvent system at −12°C. The obtained cellulose/LDH composited materials were characterized and the results indicated that well dispersion of LDH in the cellulose matrix. The tensile strength of RCL membranes were enhanced to 92.1 MPa from 68.3 MPa for that of RC film because of the strong interfacial interaction between the LDHs and cellulose matrix as well as the high rigidity of the LDHs. The addition of LDH into the cellulose could improve the thermal stability, water resistance, and flame retardant of the regenerated cellulose film. Zn2+ ions were exited in the cellulose/ZnAl-LDH materials, leading to good antibacterial activities against Staphylococcus aureus and Escherichia coli, which is important for RCL composite materials in antibacterial packaging filed.  相似文献   

3.
Bacterial cellulose membranes have attracted a great deal of attention as novel biomedical materials. In this paper, bacterial cellulose was treated with acidic, alkaline, and redox solutions to investigate the subsequent changes in the characteristics of the cellulose. The chemical structure, crystalline state, water-holding capacity, and micromorphology of each modified BC were characterized by FTIR, SEM, and XRD. After these treatments, the intermolecular or intramolecular hydrogen bonds of the BC were broken and the water bound to the BC was released from the BC hydrogel. During these processes, the crystallinity and surface morphology of the BC were also modified. Meanwhile, the crystalline form of the BC changed from cellulose I to II in alkaline medium. In particular, the BC nanofiber hydrogel broke into floccules when treated with highly concentrated NaOH solution at a temperature of ?5 °C, but these floccules congregated into a bulk state again after removing the NaOH.  相似文献   

4.
Super-hydrophobic surface is widely used in waterproof, antifouling, and anticorrosion fields because of its unique wetting characteristics. However, the rough structure of super-hydrophobic surface is easily damaged in service, which leads to the loss of various properties, making it difficult to apply super-hydrophobic surface on a large scale in actual production. In this paper, epoxy resin was used as adhesive, mixed with hydrophobic silica particles and sprayed on the surface of carbon fiber composites. After curing, the surface of super-hydrophobic carbon fiber composites with contact angle of 158 ± 2° and sliding angle of 1 ± 0.5° was formed. The surface had excellent dynamic water repellent performance, and the droplets could bounce more than three times on the surface. Furthermore, the super-hydrophobic surface had excellent wear resistance and mechanical stability. After the friction damage test, the surface structure of the sample was slightly damaged. The amount of wear was small, and the surface was still in super-hydrophobic state. Through soaked in solutions with different pH values, the microstructure of the surface was not obviously damaged by corrosion, the contact angle of water droplets was greater than 155°. The preparation method of super-hydrophobic surface of carbon fiber composite proposed in this study is simple and rapid, and the prepared surface has excellent performance, the practical application of super-hydrophobic surface is promoted.  相似文献   

5.
In this study, cellulose acetate and castor oil have been used to synthesize new eco-friendly alternatives to traditional polyurethane adhesives. First, cellulose acetate (CA) was modified with diphenylmethane-4,4′-diisocyanate (MDI) at different NCO:OH molar ratios, ranging from 2 to 4.53, and then the resulting biopolymers were mixed with castor oil (CO) at 1:1 wt ratio. The fully cured bio-sourced adhesives were rheologically characterized by applying dynamic oscillatory torsional tests at different temperatures (from −30 up to 200 °C). Furthermore, their adhesion performance on stainless steel and poplar wood substrates was analyzed, by conducting standardized mechanical tests, namely single-lap shear and 180° peel strengths, at room temperature and 100 °C. Fourier transform infrared spectroscopy-attenuated total reflectance along with differential scanning calorimetry and thermogravimetric analysis were also performed. Above a critical NCO:OH ratio, a thermo-rheological simplicity was found within the whole temperature range considered, being able to apply the t-T superposition principle. However, an increase in the temperature led to a depletion in their mechanical performance, thus reducing their temperature range of application. Thermal and spectroscopic analysis corroborated the complete disappearance of free isocyanate during the first few days of curing, and a segmented structure, typical of polyurethanes. Optimum thermo-rheological behaviour and adhesion performance on wood and stainless steel of the bio-sourced polyurethanes studied were found for NCO:OH molar ratios higher than 3.5, which was related to the higher compatibility between hard and soft microdomains.  相似文献   

6.
Partially acetylated cellulose nanofibers (CNF) were chemically extracted from sisal fibers and the performance of those CNF as nanofillers for polylactide (PLA) for food packaging applications was evaluated. Three PLA nanocomposites; PLA/CNF (cellulose nanofibers), PLA/CNC (nanocrystalline cellulose), and PLA/C30B (CloisiteTM 30B, an organically modified montmorillonite clay) were prepared and their properties were evaluated. It was found that CNF reinforced composites showed a larger decrease on oxygen transmission rate (OTR) than the clay‐based composites; (PLA/CNF 1% nanocomposite showed a 63% of reduction at 23°C and 50% RH while PLA/C30B 1% showed a 26% decrease) and similar behavior on terms of water vapor barrier properties with 46 and 43%, respectively of decrease on water vapor transmission rate at 23°C and 50% RH (relative humidity). In terms of mechanical and thermomechanical properties, CNF‐based nanocomposites showed better performance than clay‐based composites without affecting significantly the optical transparency. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43257.  相似文献   

7.
By using natural softwood pulp with higher degree of polymerization (DP = 1460) as cellulose source, 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) ionic liquid as solvent and glycerol as plasticizer, a novel cellulose packaging film was prepared. The effects of plasticization conditions on the structures, mechanical properties, permeability for oxygen and water vapor were measured by Wide-angle X-ray scattering, thermogravimetric analysis, scanning electron microscopy (SEM), and other techniques. The investigations suggested that the glycerol concentration and plasticizing time had great effect on the properties of the regenerated cellulose films. The crystal transformation of cellulose I to cellulose II occurred during the dissolution and regeneration process, combining with the decrease of thermal stability. The tensile strength decreased rapidly with the addition of glycerol and prolongation of plasticizing time. However, elongation at break of the regenerated cellulose films increased at first and then decreased with increasing of glycerol concentration and plasticizing time. The morphologies for the fracture surface obtained from SEM images showed transformation of typical brittle fracture to plastic deformation with increasing of glycerol concentrations. It was also found that both water vapor permeability and oxygen permeability of the regenerated cellulose films decreased slowly with increasing of glycerol concentrations and plasticizing time, but water vapor permeability and oxygen permeability presented an almost opposite trend. The films prepared by using ionic liquid technology would be used in food packaging or other fields as a kind of green packaging material. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
In recent years, a lot of interest has been given to renewable resources for their environmental friendliness and potential biodegradability in the synthesis of urethane-derived polymers. In this work, UV-curable castor oil-based polyfunctional polyurethane acrylate (COPUA) was prepared by the reaction of isophorone diisocyanate (IPDI) with castor oil and pentaerythritol triacrylate (PETA). The structures and molecular weights of the targeted IPDI–PETA and COPUA were characterized by FTIR, 1H NMR, and GPC, respectively. In addition, the effect of reactive diluent content on damping properties, thermal stabilities, and mechanical properties of COPUA was characterized by dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA), and universal test machine. DMA revealed the copolymers had a glass transition temperature (T g) from 31.81 to 48.09°C. TGA showed that thermal initial decomposition temperatures were above 344.5°C, indicating the copolymers had certain thermal stability. Finally, some physical properties of curing films were studied by the contact angle and water absorption, and the results showed that the coatings exhibited good hydrophobicity. The COPUA obtained from castor oil can be used as eco-friendly materials and other applications alternative to the use of other petrochemicals in coatings.  相似文献   

9.
The starch composite films (SCFs) will be one of the best alternative packaging materials to petroleum based plastic films, which mitigates white pollution and energy consumption. However, weak mechanical stability, water resistance, and dyeability has hindered the application of SCFs. Herein, a bioinspired robust SCFs with super-hydrophobicity and excellent structural colors were prepared by fiber-reinforcement and assembling SiO2/Polydimethylsiloxane (PDMS) amorphous arrays on the surface of SCFs. The properties of the designed SCFs were investigated by various methods including scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), a tensile test, contact angle (CA) test, and an optical test. The results showed that the obtained SCFs possessed a higher tensile strength (55.17 MPa) attributed to the formed abundant hydrogen bonds between the molecular chains of the starch, cellulose fiber, and polyvinyl alcohol. Benefiting from the nanostructure with rough surface which were modified by materials with low surface free energy, the contact angle and sliding angle of the film reached up to 154° and 2°, respectively. The colors which were produced by the constructive interference of the coherent scattered light could cover all of the visible regions by tuning the diameters of the SiO2 nanoparticles. The strategy in the present study not only reinforces the mechanical strength and water resistance of SCFs but also provides an environmentally friendly way to color the them, which shows unprecedented application potential in packaging materials of the starch composite films.  相似文献   

10.
In this study, we prepared polydimethylsiloxane (PDMS)‐modified polyurethane–poly(?‐caprolactone) nanofibrous membranes with excellent waterproof, breathable performances via an electrospinning technique. Field emission scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and mechanical testing were used to characterize the morphologies and properties of the composite nanofibers. The fiber diameter and porous structure of the membranes were regulated by the adjustment of the temperatures of thermal treatment and the PDMS concentrations. The fibrous membranes obtained at a typical temperature of 70 °C possessed an optimized fibrous structure with a diameter of 514 ± 2 nm, a pore size of 0.55–0.65 µm, and a porosity of 77.7%. The resulting nanofibrous membranes modified with 5 wt % PDMS were endowed with good waterproof properties (water contact angle = 141 ± 1°, hydrostatic pressure = 73.6 kPa) and a high breathability (air permeability rate = 6.57 L m?2 s?1, water vapor transmission rate = 9.03 kg m?2 day?1). Meanwhile, the membranes exhibited robust mechanical properties with a high strength (breakage stress = 11.7 MPa) and excellent thermal stability. This suggests that they would be promising candidates for waterproof, breathable applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46360.  相似文献   

11.
刘群  张玉苍 《化工进展》2020,39(8):3124-3134
利用淀粉制备可生物降解的淀粉基塑料并替代传统的石化产品合成非降解塑料,对改善并解决白色污染问题有重要意义。由于淀粉本身力学性能较差,需要对其进行物理或化学改性,以提高其力学性能。本文综述了常见的改性方法有:热塑性处理,使淀粉转变为热塑性淀粉,以改善淀粉的延展性能和成膜性;将淀粉和高聚物(PVA、PLA、PBAT)共混制备的复合降解塑料,较纯淀粉基塑料成膜性能和力学性能明显改善;将淀粉与增强剂(纤维素、壳聚糖、木质素、石墨烯等)共混,产品的力学性能、阻水性能、热稳定性、透氧性、透明度等性能得以改善,成本降低;在制备淀粉基塑料的过程中添加增塑剂,可干扰淀粉分子间强的相互作用,使其柔韧性增加。淀粉基生物降解塑料作为包装材料在食品、农业、制药等行业具有广泛的应用潜力。  相似文献   

12.
The nanosphere having hydrophobic backbone and hydrophilic branches was used as the agent for the surface modification of a cellulose film. They were obtained by dispersion copolymerization of styrene (St) and poly(ethylene glycol) (PEG) macromonomers in an ethanol/water solution at 60°C by using a free‐radical initiator. The PEG‐coated polystyrene (PSt) nanosphere–water dispersions were prepared at concentrations of 0.1, 0.2, 0.5, and 1.0% (w/v). A measure of 1 mL of the dispersion was poured over the cellulose film, cut into a strip of 5 × 5 cm2. The film was pressed by plates heated at 200°C with 6.8 g/cm2 pressure for 2 min to melt PSt nanospheres and fix them on the cellulose film. The morphology of the film surface was also observed by a scanning electron microscopy (SEM). The resulting modified surface was characterized by X‐ray photoelectron spectroscopy (XPS). The contact angle, the moisture absorption, and the leakage of electrostatic charge from the film were studied. The surface of the film treated with the dispersion had high water‐repellency, although the bulk properties did not change. It was found that the dispersion was effective in making the cellulose surface hydrophobic. The surface modification of cellulose film was successful by using this simple method. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1516–1523, 1999  相似文献   

13.
Resins containing plant oil‐based cross‐linkers were studied with two reactive diluents: a styrene and an acrylated fatty acid methyl ester‐based (AFAME) monomer. Acrylated epoxidized soybean oil and maleinated castor oil monoglyceride were bio‐based cross‐linkers used. The viscosity and mechanical properties of the resulting polymers were measured and analyzed. Both bio‐based cross‐linkers prepared using the modified AFAME as diluent had a fairly high viscosity, so blends of AFAME and styrene were needed to meet the viscosity requirements established by the composite industry (<1000 cP at room temperature). In addition, the glass transition temperature (Tg) and stiffness of bio‐based cross‐linker/AFAME polymers were significantly lower than the resin/styrene polymers. Ternary blends of maleinated castor oil monoglyceride with AFAME and styrene improved the mechanical properties to acceptable comparable values (storage modulus at 30°C ~ 1200 MPa and Tg ~ 100°C). The addition of 5 wt% of chemically modified lignin led to an improvement in the mechanical properties of the polymeric matrix but caused an increase in the viscosity. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

14.
Poly(lactic acid) (PLA) is a biodegradable polymer used in packaging, but its properties can be improved by manufacturing composite matrixes. The combination of PLA, starch, and nano-montmorillonite leads to materials with superior mechanical properties. Mango lump is rich in cellulose and starch. The goal of this study is to develop and characterize biocomposites based on PLA, mango waste, and nano-organo-montmorillonite for packaging. The samples were microstructurally, morphologically, and mechanically characterized. Physical interaction between the phases was observed. The mango components displaced the PLA X-ray diffraction peaks and the clays altered their intensity, by interfering with chain packing. The addition of single components to PLA increased the samples’ transition temperatures, but the addition of multiple components diminished them. PLA showed adhesiveness to cellulose fibers and nonadhesiveness to starch granules. Thicker samples presented better mechanical properties. PLA–mango–“chocolate clay” samples are relatively stable materials, while PLA–mango–“bofe clay” samples could represent promising highly biodegradable materials. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47512.  相似文献   

15.
The use of natural materials has grown in the last years in the plastics industry. Natural lignocellulose fibers derived from agricultural waste present potential to be used as a replacement for glass fibers for polymer reinforcement, leading to lower CO2 footprint products. However, cellulose fibers are hydrophilic and polar and as a result of that, incompatible with hydrophobic polymers such as polypropylene. For this reason, a surface modification on the cellulose fiber is required. This work focuses on the modification of the cellulose fibers to improve the compatibility with polypropylene. Wheat straw fibers derived from agricultural waste were scoured with the purpose to remove lignin, hemicellulose and pectin to facilitate the defibrillation. The fibers were then esterified using acetic anhydride. Thermal gravimetric tests have shown an increase in the thermal stability of the scoured and esterified cellulose fibers, from 246°C for untreated fibers to 292°C and 316°C, respectively. From mechanical tests results it could be seen that the tensile modulus of the composites with esterified cellulose fibers increased 57% compared with the neat PP. Flexural strength increased by 31% and flexural modulus by 70%. The use of esterified fibers led to an improvement of 79% in the impact strength compared with the neat PP. A better compatibilization between fibers and matrix could be seen using maleic anhydride modified polypropylene copolymer as compatibilizer, even with esterified fibers, probably due to residual hydroxyl groups still available on modified cellulose. POLYM. COMPOS., 37:2133–2141, 2016. © 2015 Society of Plastics Engineers  相似文献   

16.
Environmentally friendly and lightweight silylated cellulose nanocrystal (SCNCs)/waterborne polyurethane (WPU) composite films that exhibit excellent mechanical properties and water resistance were prepared. The cellulose nanocrystals (CNCs) of the filamentous structure were surface-modified by γ-aminopropyltriethoxysilane (APTES) and then introduced into a castor oil-based aqueous polyurethane (WPU) matrix by in situ polymerization. The morphology and silylation degree of CNCs were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and Fourier infrared transform spectroscopy at different APTES concentrations. The results showed that the surface of the nanocellulose crystal has the best silylation morphology and thermal stability with incorporation of 6 wt % APTES. The thermal stability, mechanical properties, surface morphology, and water resistance of the nanocomposites were investigated by TGA, tensile test, SEM and optical contact angle, water absorption test, and mechanical property test after immersed in water. It was found that the effective introduction of modified CNCs resulted in a significant increase in tensile strength at high levels, and the thermal stability and hydrophobicity of the material were improved simultaneously, reaching the percolation threshold at a 0.50 wt % SCNCs as determined theoretically. This study provided an approach to the design and development of surface-modified CNCs/vegetable oil-based polymer composites by using an appropriate concentration of silane coupling agent to modify CNCs and improve the compatibility between nanocellulose and vegetable oil-based polymer matrices. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48228.  相似文献   

17.
以甲苯二异氰酸酯(TDI)、聚乙二醇(PEG)和N-甲基二乙醇胺(MDEA)等为主要原料,以蓖麻油(C.O.)作为部分聚醚多元醇的替代物,采用PU(聚氨酯)预聚体法制备出具有一定交联结构的亲水性阳离子型WPU(水性聚氨酯)乳液。结果表明:当体系交联度较低时,C.O.对WPU的改性效果不明显;当体系交联度较高时,WPU乳液稳定性及其胶膜耐水性等均随C.O.比例增加而提高;当n(PEG)∶n(C.O.)=7∶3时,WPU胶膜的耐水性(吸水率约6%)相对最好,其静态接触角(约82°)相对最大。  相似文献   

18.
The physical and mechanical properties of interpenetrating polymer networks (IPN's) based on castor oil-urethane and polystyrene are detailed in this paper. Dynamic mechanical spectroscopy showed extensive but incomplete molecular mixing of the two polymers. The glass transition temperatures of the IPN's gradually merged from two distinct transitions into one broad transition at an intermediate temperature as the crosslink level of the castor oil component was increased. At low polystyrene contents, the IPN's yielded stress-strain behavior similar to reinforced elastomers, but at high polystyrene contents, they exhibited increased elongation. For example, the latter materials showed well developed yield points. Stress whitening and necking were also observed, suggesting a possible failure mechanism by crazing. Cold drawing was exhibited by the materials under tension. The tensile strength and Young's modules were enhanced as the polymer II (polystyrene) content was increased at constant crosslink level of polymer I (castor oil-urethane). A similar effect was also observed by maintaining the polystyrene content constant but increasing the crosslink level of polymer I. The impact strength of the materials ranged from 32.1 to 53.4 N · m/m, which is approximately two to three times that of homopolymer polystyrene. The best materials were those with compositions in the range of 40-46 percent castor oil-urethane. The materials prepared by using tolylene diisocyanate as crosslinker for the castor oil phase had the best impact properties, especially at an NCO/OH ratio of 0.95.  相似文献   

19.
Cellulose materials and products are frequently affected by environmental factors such as light, temperature, and humidity. Simulated UV irradiation, heat, and moisture exposure were comprehensively used to characterize changes in cellulose nanopaper (NP) tensile properties. For the preparation of NP, high-purity cellulose from old, unused filter paper waste was used. Lignin and xylan were used as sustainable green interface engineering modifiers for NP due to their structural compatibility, low price, nontoxic nature, and abundance as a by-product of biomass processing, as well as their ability to protect cellulose fibers from UV irradiation. Nanofibrillated cellulose (NFC) suspension was obtained by microfluidizing cellulose suspension, and NP was produced by casting films from water suspensions. The use of filler from 1 to 30 wt% significantly altered NP properties. All nanopapers were tested for their sensitivity to water humidity, which reduced mechanical properties from 10 to 40% depending on the saturation level. Xylan addition showed a significant increase in the specific elastic modulus and specific strength by 1.4- and 2.8-fold, respectively. Xylan-containing NPs had remarkable resistance to UV irradiation, retaining 50 to 90% of their initial properties. Lignin-modified NPs resulted in a decreased mechanical performance due to the particle structure of the filler and the agglomeration process, but it was compensated by good property retention and enhanced elongation. The UV oxidation process of the NP interface was studied with UV-Vis and FTIR spectroscopy, which showed that the degradation of lignin and xylan preserves a cellulose fiber structure. Scanning electron microscopy images revealed the structural formation of the interface and supplemented understanding of UV aging impact on the surface and penetration depth in the cross-section. The ability to overcome premature aging in environmental factors can significantly benefit the wide adaption of NP in food packaging and functional applications.  相似文献   

20.
Durable excellent hydrophobic surface on cellulose substrate was fabricated from the silica hydrosol functionalized with silane chemicals by a facile electrochemically assisted deposition technique. The silica hydrosol was synthesized using tetraethoxysilane (TEOS) as the precursor and sodium dodecylbenzene (SDBS) as the emulsifier under acidic conditions. The hydrophobic silane modifiers including octyltriethoxysiliane (OTES), dodecyltriethoxysiliane (DTES) and isooctyltriethoxysiliane (iso‐OTES) and the silane‐coupling agent γ‐mercaptopropyltriethoxysilane (MPTES) were used to dope the silica hydrosol for preparing durable hydrophobic cellulose surface. The cellulose surface modified with silane modifier iso‐OTES exhibited the best hydrophobicity with water contact angle of 162.3 ± 0.5° due to its non‐polar and hydrolytically stable of ? Si(C8H17) groups. The addition of silane‐coupling agent MPTES containing the ? SH group led to good durability of hydrophobicity with water contact angle of 130.0 ± 1.2° after 20 washing times. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42733.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号