共查询到20条相似文献,搜索用时 15 毫秒
1.
According to the basic information of sequences of Ti and Al characteristic atoms in hcp Ti-Al system, the compositional variations of the electronic structure, atomic potential energies, atomic volumes, lattice constants and cohesive energies of the ordered hcp Ti3Al type alloys were calculated by the framework of systematic science of alloys(SSA). The electronic structure of the hcp Ti3Al compound consisted of ψ4h^Ti and ψ0h^Al atoms is 0.75[Ar] (3dn)^0.573(3dc)^2.1685(4sc)^0.972(4sf)^0.3093+0.25[Ne](3sc)^1.32(3pc)^1.19(3sf)^0.49. The factors of controlling lattice stability are electronic structure, atomic energies and atomic concentration. The ψ4h^Ti atoms play a determinative role in forming D019 structure with a=0.287 2 nm, c=0.456 4 nm, atomic cohesive energy e=4.810 8 eV/atom and heat of formation △H=-0.332 8 eV/atom. These calculated values are in good agreement with experimental values (a=0.287 5 nm, c=0.46 0 nm, △H=-0.27, -0.29 eV/atom). The calculated cohesive energy of the hcp Ti3Al compound is slightly bigger than that of the fcc Ti3Al.This is a good sign that makes it feasible to stabilized L 12 structure of the hcp Ti3Al compound by ternary element, The new element should have more dc-electrons than Ti-metal and occupy at the Ti-lattice points. 相似文献
2.
《International Journal of Cast Metals Research》2013,26(5):264-266
AbstractThe microstructure and properties of three Al–3Li–1Cu ternary alloys have been studied, in particular the effect of Zr additions on the microstructure, precipitation and mechanical properties. The results showed that, for these Al–Li casting alloys, Zr content up to 0.2 wt-% was acceptable, and the Zr additions appeared to refine the grain structure. During aging, the Zr rich phase provided nucleation sites for δ' phase and promoted δ' phase refinement and homogenisation. Under optimised conditions, the tensile strength and elongation to failure of the Al–Li–Cu–Zr casting alloys were 400 MPa and 2.5%, respectively. 相似文献
3.
Electronic structure of Au-Cu alloys 总被引:2,自引:0,他引:2
By studying the correlativity between energy, volume and electronic structure of characteristic crystals and bound conditions of OA theory, the potential energy function, atomic volume interactive function and electronic structure of Au-Cu alloys have been determined. Then following the general Vegard‘s law in characteristic theory, the electronic structure and properties of disordered continue solid solution and three ordered alloys with the maximum ordering degree are calculated. It is found that the non-bonding electrons and near-free electrons in outer shell will transform to covalent electrons during alloying. By analyzing the variation of electronic structure and cohesion of ordering and disordered alloys, the transformation of order-disorder transition Au-Cu alloy has been studied. 相似文献
4.
The effect of the composition and cooling rate of the melt on the microhardness, phase composition, and fine-structure parameters of as-cast and splat-quenched (SQ) high-entropy (HE) Al–Cu–Fe–Ni–Si alloys was studied. The quenching was performed by conventional splat-cooling technique. The cooling rate was estimated to be ~106 K/s. Components of the studied HE alloys were selected taking into account both criteria for designing and estimating their phase composition, which are available in the literature and based on the calculations of the entropy and enthalpy of mixing, and the difference between atomic radii of components as well. According to X-ray diffraction data, the majority of studied Al–Cu–Fe–Ni–Si compositions are two-phase HE alloys, the structure of which consists of disordered solid solutions with bcc and fcc structures. At the same time, the Al0.5CuFeNi alloy is single-phase in terms of X-ray diffraction and has an fcc structure. The studied alloys in the as-cast state have a dendritic structure, whereas, after splat quenching, the uniform small-grained structure is formed. It was found that, as the volume fraction of bcc solid solution in the studied HE alloys increases, the microhardness increases; the as-cast HE Al–Cu–Fe–Ni–Si alloys are characterized by higher microhardness compared to that of splat-quenched alloys. This is likely due to the more equilibrium multiphase state of as-cast alloys. 相似文献
5.
The addition of Ta to Fe–Al alloys results in the formation of a stable Ta(Fe,Al)2 Laves phase with hexagonal C14 structure in the Fe–Al phase at temperatures of 800, 1000 and 1150 °C. It was found that the solubility of Ta in Fe–Al is generally low and the solubility of Ta varies with Al content. Respective isothermal sections of the Fe–Al–Ta system have been established. Particular attention has been given to precipitation in the Fe3Al phase with a small addition of Ta. At intermediate temperatures, 600–750 °C, an additional Heusler-type phase with L21-structure precipitates, which transforms at longer times and high temperatures to the stable C14 Laves phase. The yield stress in compression and the creep behaviour of the Fe–Al–Ta alloys with various microstructures were studied. Due to the presence of the L21-Heusler phase, the yield stress and the creep resistance at temperatures below 700 °C was increased considerably. 相似文献
6.
R. Novakovic E. Ricci S. Amore T. Lanata 《稀有金属(英文版)》2006,25(5):457-468
The lack of experimental data and / or limited experimental information concerning both surface and transport properties of liquid alloys often require the prediction of these quantities. An attempt has been made to link the thermophysical properties of a ternary Cu-Sn-Ti system and its binary Cu-Sn, Cu-Ti and SnoTi subsystems with the bulk through the study of the concentration dependence of various thermodynamic, structural, surface and dynamic properties in the frame of the statistical mechanical theory in conjunction with the quasi-lattice theory (QLT). This formalism provides valuable qualitative insight into mixing processes that occur in molten alloys. 相似文献
7.
《Synthetic Metals》2001,125(1):107-116
Nearly 25 years after the discovery that an organic conjugated polymer can be “doped” (that is, in chemical terminology, oxidized or reduced) to metallic-like electrical conductivity, the field of π-conjugated oligomers and polymers has enjoyed a tremendous development, most remarkably underlined by the 2000 Nobel Prize in Chemistry awarded to Alan Heeger, Alan MacDiarmid, and Hideki Shirakawa. Since, in this specific class of polymers, small variations in chemical structure play an essential role and the properties of interest directly depend on the electronic structure, quantum–chemical approaches, that take the chemical nature fully into account, have provided a most valuable input to the field. The results have helped to forge a fundamental understanding of the electronic and optical properties of π-conjugated materials and in guiding the experimental efforts toward novel compounds with enhanced characteristics. It is our main purpose in this contribution to illustrate the impact of quantum–chemical methods, more specifically in relation to transport processes. We do not dwell at all on the theoretical methodologies that have been designed, but rather on the concepts. We first recall the basic electronic-structure aspects of π-conjugated systems, that make their chemistry and physics so rich and fascinating. We then discuss the key role of interchain interactions and their impact on transport. 相似文献
8.
《Scripta materialia》2003,48(5):565-570
To design an alloy with high strength around 1773 K and good ductility at room temperature, the microstructure, the compression strength and the creep properties at 1773 K of the Ir–Al alloys with an fcc and B2 two-phase structure were investigated. High-temperature mechanical properties are discussed in terms of microstructure. 相似文献
9.
10.
Twin-arc equipment using nickel and aluminium electrode wires is proposed for depositing intermetallic alloys of the nickel–aluminium system on steel. The processes of twin-arc surfacing and the properties of the deposited alloys of the nickel–aluminium system are investigated. 相似文献
11.
S. Scudino P. Donnadieu K.B. Surreddi K. Nikolowski M. Stoica J. Eckert 《Intermetallics》2009,17(7):532-539
Multi-phase Fe90?xZr10Crx alloys with 0 ≤ x ≤ 10 containing cubic C15 and hexagonal C14/C36 Laves phases have been prepared by copper mold casting. The microstructure of the samples consists of micrometer-sized Laves phase particles embedded in an ultrafine eutectic matrix of alternating lamellae of α-Fe and Laves phases. Room temperature compression tests of the binary alloy reveal a high strength of 1900 MPa combined with a plastic strain of about 9%. The addition of Cr improves the plastic strain up to 17% while reducing the strength only by about 70 MPa. The increased plastic deformation is linked to the specific structural features of the Laves phases. For the binary alloy, shearing and crack formation within the C15 phase limits plastic deformation. In contrast, in the samples containing Cr no shearing occurs within the C14/C36 phases and crack formation, which is observed at the particle/ferrite interface, is retarded. 相似文献
12.
《Intermetallics》2000,8(5-6):659-662
Microstructure and tensile properties of orthorhombic Ti–Al–Nb–Ta alloys have been studied. In order to optimize ductility and strength of the orthorhombic alloys with the nominal compositions of Ti–22Al–23Nb–3Ta and Ti–22Al–20Nb–7Ta, various thermomechanical processing steps were implemented as part of the processing route. With a special heat treatment before rolling to obtain a fine and homogeneous rolled microstructure, the rolled microstructure resulted in a good combination of high tensile yield strength and good ductility of the alloys through available solution and age treatments. The duplex microstructure with equiaxed α2/O particles and fine O phase laths in a B2 matrix, deforming in α2+B2+O phase field and treating in O+B2 phase field, possesses the highest tensile properties. The R.T. yield strength and ductility of the Ti–22Al–20Nb–7Ta alloy are 1200 MPa, and 9.8% respectively. The yield strength and ductility values of 970 MPa and 14% were also maintained at elevated temperature (650°C). 相似文献
13.
14.
D. A. Shulyatev M. V. Klyueva U. Devaradjan 《The Physics of Metals and Metallography》2016,117(9):883-888
The method of growth from a melt solution was used to obtain iron-alloyed (0.08 at %) Al–Cu–Co single crystals with a decagonal symmetry. The temperature dependences of the electrical resistivity in magnetic fields of 0–18 T were measured using samples oriented in the periodic direction (ρp(T)) and in the quasi-periodic plane (ρq(T)). A strong anisotropy of the resistivity was observed; the ρp(T) curve is linear, whereas the ρq(T) curve is approximated well by a second-order polynomial. A strong anisotropy of the magnetoresistance was also observed; a positive magnetoresistance Δρ/ρ ~ 10–3 for the current flowing in the quasiperiodic plane; and a weak (close to zero) negative magnetoresistance for the current flowing along the periodic direction. 相似文献
15.
《Intermetallics》2014
We have succeeded to fabricate body-centered cubic (bcc) single phase of Fe–Mn–Ga alloys using melt-spinning technique. Heusler type L21 structure of Fe2MnGa alloy are predicted to have half-metallic properties, however bulk Fe2MnGa alloys crystallize into face-centered cubic (fcc) lattice with small admixture of bcc phase. By changing either ejection temperature or rotation speed of melt-spinning processing parameters, fcc or bcc lattice can be obtained from same precursor ingot. For stoichiometric Fe2MnGa as-spun alloy, super-lattice diffraction peaks indicative of L21 structure are observed from XRD measurements. The as-spun bcc alloys transform into ferromagnetic hexagonal lattice by thermal annealing. 相似文献
16.
The objective of this study was to investigate the effect of swaging on the microstructure and tensile properties of high density two phase alloys 90W–7Ni–3Fe and 93W–4.9Ni–2.1Fe. Samples were liquid phase sintered under hydrogen and argon at 1480 °C for 30 min and then 15% cold rotary swaged. Measurement of microstructural parameters in the sintered and swaged samples showed that swaging slightly increased tungsten grain size in the longitudinal direction and slightly decreased tungsten grain size in the transverse direction. Swaging increased the contiguity values in both longitudinal and transverse directions. Swaging led to more severe deformations at the edges than at the center of the specimens. Solidus and liquidus temperatures of the nickel-based binder phase in the sintered and swaged samples were determined by differential scanning calorimetry measurements. An increase in tensile strength with a reduction in ductility was observed due to strain hardening by swaging. 相似文献
17.
S. Lesz R. Babilas M. Nabiałek M. Szota M. Dośpiał R. Nowosielski 《Journal of Alloys and Compounds》2011
Recently bulk amorphous alloys have attracted great attention due to their excellent magnetic properties. The glass-forming ability of bulk amorphous alloys depends on the temperature difference (ΔTx) between glass transition temperature (Tg) and crystallization temperature (Tx). The increase of ΔTx causes a decrease of the critical cooling rate (Vc) and growth of the maximum casting thickness of bulk amorphous alloys. The aim of the present paper is to characterize the structure, the thermal stability and magnetic properties of Fe36Co36B19Si5Nb4 bulk amorphous alloys using XRD, Mössbauer spectroscopy, DSC and VSM methods. Additionally the magnetic permeability μi (at force H ≈ 0.5 A/m and frequency f ≈ 1 kHz) and the intensity of disaccommodation of magnetic permeability Δμ/μ(t1) (Δμ = μ(t1 = 30 s) ? μ(t2 = 1800 s)), have been measured, where μ is the initial magnetic permeability measured at time t after demagnetisation, the Curie temperature TC and coercive force Hc of rods are also determined with the use of a magnetic balance and coercivemeter, respectively.Fe–Co–B–Si–Nb bulk amorphous alloys were produced by pressure die casting with the maximum diameters of 1 mm, 2 mm and 3 mm.The glass transition temperature (Tg) of studied amorphous alloys increases from 807 K for a rod with a diameter of 1 mm to 811 K concerning a sample with a diameter of 3 mm. The crystallization temperature (Tx) has the value of 838 K and 839 K for rods with the diameters of 1 mm and 3 mm, respectively. The supercooled liquid region (ΔTx = Tx ? Tg) has the value of about 30 K. These values are presumed to be the origin for the achievement of a good glass-forming ability of the Fe–Co–B–Si–Nb bulk amorphous alloy. The investigated amorphous alloys in the form of rods have good soft magnetic properties (e.g. Ms = 1.18–1.24 T). The changes of crystallization temperatures and magnetic properties as a function of the diameter of the rods (time of solidification) have been stated. 相似文献
18.
《International Journal of Cast Metals Research》2013,26(1-4):15-21
AbstractSynchrotron radiation enables the observation of solidification in metallic alloys. In situ observations of solidification for Al–Cu alloys (5, 10 and 15 wt-%Cu) are reported. Nucleation and fragmentation of dendrite arms were often observed in the 15 and 10%Cu alloys when unidirectional solidification was performed from the planar interface. In contrast, nucleation and fragmentation were rarely observed in the 5%Cu alloys. The nucleation ahead of the solidifying front and the fragmentation in the mushy region strongly depended on alloy composition. This paper also presents in situ observation of solidification of Fe–10Si–0·5Al (at-%) alloys. The dendritic growth of δ-Fe was clearly observed using this technique. The development of X-ray imaging techniques enables the solidification of various conventional cast alloys such as Al, Ni and Fe alloys to be observed and will be increasingly used to investigate solidification phenomena. 相似文献
19.
《中国有色金属学会会刊》2021,31(8):2232-2249
The differences in the microstructure and elevated temperature tensile properties of gravity die cast, squeeze cast, and semi-solid thixoformed Al–Si–Cu–Mn–Fe alloys after thermal exposure at 300 °C were discussed. The results demonstrate that the elevated temperature tensile properties of semi-solid thixoformed alloys were significantly higher than those of gravity die cast and squeeze cast alloys, especially after thermal exposure for 100 h. The ultimate tensile strength (UTS) of semi-solid thixoformed alloys after thermal exposure at 300 °C for 0.5, 10 and 100 h were 181, 122 and 110 MPa, respectively. The UTS values of semi-solid thixoformed alloys were higher than those of heat resistant aluminum alloys used in commercial applications. The enhanced elevated temperature tensile properties of semi-solid thixoformed experimental alloys after thermal exposure can be attributed to the combined reinforcement of precipitation strengthening and grain boundary strengthening due to thermally stable intermetallic phases as well as suitable grain size. 相似文献
20.
M. Galano F. Audebert A. García Escorial I.C. Stone B. Cantor 《Acta Materialia》2009,57(17):5120-5130
Nanoquasicrystalline Al-based alloys show considerable promise for elevated temperature applications compared with commercial Al-based alloys. In particular, a group of Al–Fe–Cr-based alloys-containing Ti, V, Nb or Ta have outstanding thermal stability. In the present work, the elevated temperature mechanical properties of these nanoquasicrystalline alloys were studied by tensile tests at a constant strain rate. Tests were designed in order to compare the mechanical behaviour at different test temperatures. Fractographic analysis was also carried out. The apparent activation energy for plastic deformation was found to be close to that for lattice self-diffusion for pure Al in the Al–Fe–Cr ternary alloy and in the Ti-containing alloy, and for grain boundaries diffusion for pure Al in the V-containing alloy, whereas the activation energy of the alloy with Ta additions was three times higher. All of the alloys showed similar sensitivity of plastic deformation to the strain rate in the range of 10?3–5 × 10?6 s?1 at 350 °C. The apparent true stress exponent was napp ~ 7, which can be associated with a deformation process controlled by dislocation mechanisms. 相似文献