首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The surface fluorination of diamond by treatment in glow discharge plasmas of CF4 for different times has been investigated. High quality diamond films were deposited onto silicon substrates using hot filament chemical vapor deposition (HFCVD). Subsequently, the films were exposed to a radiofrequency glow discharge plasma of CF4 for times ranging from 5 min to 1 h. The effects of the plasma treatment on the surface morphology, diamond quality and elemental composition were investigated using atomic force microscopy (AFM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS), respectively. Differences in film roughness caused by the plasma treatment were detected by AFM and confirmed by scanning electron microscopy (SEM). Raman spectroscopic analyses showed that the original diamond was of high quality and that the bulk of each film was unchanged by the plasma treatment. Analyses using XPS revealed increased surface fluorination of the films at longer treatment times. In addition, the density of free radicals in the films was probed using electron paramagnetic resonance spectroscopy (EPRS), revealing that untreated diamond possesses an appreciable density of free radicals (6×1012 g−1) which initially falls with treatment time in the CF4 plasma but increases for long treatment times.  相似文献   

2.
Diamond and carbon nanostructures have been synthesized selectively on differently pretreated silicon substrates by hot filament chemical vapor deposition in a CH4/H2 gas mixture. Under typical conditions for CVD diamond deposition, carbon nanotube and diamond films have been selectively grown on nickel coated and diamond powder scratched silicon surface, respectively. By initiating a DC glow discharge between the filament and the substrate holder (cathode), well aligned carbon nanotube and nanocone films have been selectively synthesized on nickel coated and uncoated silicon substrates, respectively. By patterning the nickel film on silicon substrate, pattern growth of diamond and nanotubes has been successfully achieved.  相似文献   

3.
Boron and silicon doped diamond films are deposited on the cobalt cemented tungsten carbide (WC-Co) substrate by using a bias-enhanced hot filament chemical vapor deposition (HFCVD) apparatus. Acetone, hydrogen gas, trimethyl borate (C3H9BO3) and tetraethoxysilane (C8H20O4Si) are used as source materials. The tribological properties of boron-doped (B-doped), silicon-doped (Si-doped) diamond films are examined by using a ball-on-plate type rotating tribometer with silicon nitride ceramic as the counterpart in ambient air. To evaluate the cutting performance, comparative cutting tests are conducted using as-received WC-Co, undoped and doped diamond coated inserts, with high silicon aluminum alloy materials as the workpiece. Friction tests suggest that the Si-doped diamond films present the lowest friction coefficient and wear rate among all tested diamond films because of its diamond grain refinement effect. The B-doped diamond films exhibit a larger grain size and a rougher surface but a lower friction coefficient than that of undoped ones. The average friction coefficient of Si-doped, B-doped and undoped diamond films in stable regime is 0.143, 0.193 and 0.233, respectively. The cutting results demonstrate that boron doping can improve the wear resistance of diamond films and the adhesive strength of diamond films to the substrates. Si-doped diamond coated inserts show relatively poor cutting performance than undoped ones due to its thinner film thickness. B-doped and Si-doped diamond films may have tremendous potential for mechanical application.  相似文献   

4.
Without surface pretreatment or applying additional interlayer, diamond films have been directly synthesized on an Fe-25Cr-5Al steel substrate by a hot filament chemical vapor deposition method from an H2-1vol.% CH4 gas mixture. Due to an effective removal of intermediate graphite phase from the diamond-steel interface, the coated diamond films were continuous and adherent well to the steel substrate. Aligned conical diamond structures were also achieved on this steel substrate by negatively biasing the substrate holder and inducing a glow discharge. The deposition behavior of carbon on Fe-Cr-Ni steel substrate was different. A graphite-rich carbon film incorporated with diamond particles grew in the absence of biasing, then aligned carbon nanotube bundles were formed in the presence of negative biasing and glow discharge. The different deposition behavior of carbon on the two kinds of steel substrates was addressed in terms of the effect of their chemical compositions.  相似文献   

5.
Optical properties of the ultrananocrystalline diamond films were studied by multi-sample method based on the combination of variable angle spectroscopic ellipsometry and spectroscopic reflectometry applied in the range 0.6–6.5 eV. The films were deposited by PECVD in a conventional bell jar (ASTeX type) reactor using dual frequency discharge, microwave cavity plasma and radio frequency plasma inducing dc self-bias at a substrate holder. The optical model of the samples included a surface roughness described by the Rayleigh–Rice theory and a refractive index profile in which Drude approximation was used. The results conformed with the present understanding of the polycrystalline diamond growth on the silicon substrate because the existence of silicon carbide and amorphous hydrogenated carbon film between the silicon substrate and nucleation layer was proved.  相似文献   

6.
Iridium films on SrTiO3(001) have recently proven to be a superior substrate material for the heteroepitaxy of diamond thin films by chemical vapour deposition in the effort towards the realization of single crystal diamond films. In this paper we report on the growth and structural properties of iridium (Ir) films deposited by electron-beam evaporation on SrTiO3(001) surfaces varying the deposition temperature between 280 and 950°C. The films were studied by scanning electron microscopy, atomic force microscopy and X-ray diffraction. At the highest temperature film growth proceeds via three-dimensional nucleation, coalescence and subsequent layer-by-layer growth. The resulting films show a cube-on-cube orientation relationship with the substrate and a minimum mosaic spread of 0.15°. Towards lower deposition temperatures the orientation spread increases only slightly down to ∼500°C while the surface roughness, after passing through a maximum at ∼860°C, decreases significantly. For the lowest temperatures (below 500°C) the mosaic spread rises accompanied by the occurrence of twins until the epitaxial order is lost. Plasma treatment in the diamond deposition reactor at high temperature (920°C) yields low nucleation densities and modifies the Ir surface. At the same time {111} facets show a significantly higher structural stability as compared with {001} facets. Nucleation at 700°C results in highly aligned diamond grains with low mosaic spread and a vanishing fraction of randomly oriented grains, proving the superior properties of Ir films on SrTiO3 for diamond nucleation as compared with pure silicon substrates.  相似文献   

7.
In this paper, a novel direct current glow discharge plasma chemical vapor deposition (DC-PCVD) process, i.e., hot cathode DC-PCVD, is employed to deposit diamond films on molybdenum substrate. Compared with the conventional DC-PCVD method, the hot cathode DC-PCVD process is distinctive for its hot cathode with the temperature ranging from 700 to 1600 °C. Detailed experiments and analyses showed that the cathode temperature plays a key role in the stabilization of gas discharge and growth of diamond films.  相似文献   

8.
The use of titanium alloys for aerospace and biomedical applications could increase if their tribological behavior was improved. The deposition of an adherent diamond coating can resolve this issue. However, due to the different thermal expansion coefficients of the two materials, it is difficult to grow adherent thin diamond layers on Ti and its metallic alloys. In the present work microwave plasma chemical vapor deposition (MWPCVD) was used to deposit smooth nano-crystalline diamond (NCD) film on pure titanium substrate using Ar, CH4 and H2 gases at moderate deposition temperatures. Of particular interest in this study was the exceptional adhesion of approximately 2 μm-thick diamond film to the metal substrate as observed by indentation testing up to 150 kg load. The friction coefficient, which was measured with a cemented carbide ball of 10 mm diameter with 20 N load, was estimated to be around 0.04 in dry air. Morphology, surface roughness, diamond crystal orientation and quality were obtained by characterizing the sample with field emission electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and Raman spectroscopy, respectively.  相似文献   

9.
The mechanical and frictional properties of hydrogen- and oxygen-terminated nanocrystalline diamond films (NCD) grown by hot-filament chemical vapor deposition (HFCVD) have been investigated in the present work.The structure and morphology of the NCD films have been characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman-effect spectroscopy. In addition, X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) have been used to investigate the surface chemical groups on the NCD surface. Mechanical and frictional properties are determined using atomic force microscopy (AFM), nano-indentation, nano-scratching and micro-tribometer. The friction behavior of these films in the load range of 25 to 200 mN under reciprocating sliding conditions, using steel counter-body material has been thoroughly studied.It is noted that these films are highly crystalline with nanometer size grains and contain a very high fraction of sp3 carbon bonds. They exhibit high hardness and high elastic modulus. The friction coefficient of the film is lower under unidirectional scratch with diamond indenter than the friction coefficient under low load reciprocating sliding against steel ball. Transfer of the film from the counter-body, oxidation of transfer film and mixing of transfer film with carbonaceous layer on the worn surfaces are responsible for such behavior. Although, the friction responses of H-terminated and O-terminated films are similar under unidirectional scratch with diamond indenter, the friction coefficient of O-terminated film is always higher than the friction coefficient of H-terminated film under reciprocating sliding condition against steel counter-body material.  相似文献   

10.
The effect of Si3N4 secondary phases on chemical vapour deposition (CVD) diamond film growth was analyzed. Silicon nitride substrates were obtained by pressureless sintering, placing the green samples inside a powder bed of Si3N4/BN. Local variations in the sintering atmosphere led to samples with different grey colouration as well as chemical and physical characteristics, determined by X-ray diffraction and thermal conductivity tests, which affected the diamond film growth. A complete characterization of the films, including thickness, average crystal size, surface roughness, texture and adhesion, was done. The Si3N4 substrate with glassier phase gave thicker diamond films, with smaller crystal sizes and better film adhesion to the substrate than the diamond films grown on ceramic substrates with less vitreous phase.  相似文献   

11.
Q. Yang  W. Chen  R. Sammynaiken 《Carbon》2005,43(4):748-754
A hot filament CVD process based on hydrogen etching of graphite has been developed to synthesize diamond films and nanotips. The graphite sheet was placed close to the substrate and only hydrogen was supplied during deposition. No hydrocarbon feed gases are required for this process. High quality diamond films were synthesized with high growth rate on P-type (1 0 0)-oriented silicon wafers without discharge or bias. The diamond growth rate is approximately five times higher than that through conventional hot filament chemical vapor deposition using a gas mixture of methane and hydrogen (1 vol.% methane) under similar deposition conditions. The diamond films synthesized in this process exhibit smaller crystallites and contain smaller amount of non-diamond carbon phases. Synthesis of well-aligned diamond nanotips with various orientation angles was achieved on the CVD diamond-coated Si substrate when the substrate holder was negatively biased in a DC glow discharge. The nanotips grown at locations far enough from the sample edges are aligned vertically, while those around the sample edges are tilted and point away from the sample center. The alignment orientation of the nanotips appears to be determined by the direction of the local electric field lines on the sample surfaces.  相似文献   

12.
《Diamond and Related Materials》2000,9(9-10):1640-1645
This paper reports the progresses made recently on the nucleation and growth of high-quality, [001]-oriented diamond films and discusses the problems to be resolved. The interface structure of diamond on silicon has further been investigated by transmission electron microscopy (TEM). Heteroepitaxial diamond films with increased lateral grain size and reduced grain boundary density were prepared in both microwave plasma chemical vapour deposition (MW-CVD) and hot filament chemical vapour deposition (HF-CVD) processes. Using a growth process combining a bias-assisted H+ etching and a [001]-textured growth smooth diamond films with large lateral grain size up to 10 μm can be obtained at a film thickness of approximately 10 μm. By controlling the [001]-textured growth process thick diamond films with a lateral grain size up to 30 μm has been achieved in HF-CVD.  相似文献   

13.
Diamond thin films were deposited on silicon in gas mixtures of methane and hydrogen with different methane concentrations ranging from 1% to 100% using microwave plasma assisted chemical vapor deposition. Both Raman spectroscopy and synchrotron near edge extended X-ray absorption fine structure spectroscopy (NEXAFS) were used to characterize the electronic structure and chemical bonding of the synthesized films. The NEXAFS spectra of the nanocrystalline diamond (NCD) films exhibit clear spectral characteristics of diamond. Close observation reveals that the films (10% CH4 or above) exhibit a slightly broadened exciton transition with a 0.25 eV blue shift. With the increase in methane concentration, the growth rate, the surface smoothness, and the sp2 carbon concentration of the films increase while the grain size decreases. Well-faceted microcrystalline diamond films were synthesized with a methane concentration of 5% or lower, while NCD films were formed with a methane concentration of 10% or higher. Diamond thin films with low surface roughness and fine nanocrystalline structure have been synthesized with high methane concentrations (50% or above). It has been observed that the diamond growth rate increases with methane concentration. The growth rate at 100% methane concentration is approximately 10 times higher than at 1%.  相似文献   

14.
Amorphous carbon film, also known as DLC film, is a promising material for tribological application. It is noted that properties relevant to tribological application change significantly depending on the method of preparation of these films. These properties are also altered by the compositions of these films. DLC films are well known for their self-lubricating properties, as well. In view of this, the objective of the present work is to compare the tribological properties of diamond like carbon (DLC) film obtained by plasma enhanced chemical vapour deposition (PECVD) with the Ti containing nanocrystalline carbon (Ti/a-C:H) film obtained by unbalanced magnetron sputter deposition (UMSD) in nN load range. Towards that purpose, DLC and Ti/a-C:H films are deposited on silicon substrate by PECVD and UMSD processes respectively. The microstructural features and the mechanical properties of these films are determined by scanning electron microscope (SEM), transmission electron microscope (TEM) and nano indenter. The surface topographies and the friction force surfaces of these films are evaluated by means of an atomic force microscope (AFM). The results show that although PECVD DLC film has higher elastic modulus and higher hardness than UMSD Ti/a-C:H film, the surface roughness and the friction coefficient of PECVD film is significantly higher than that of UMSD Ti/a-C:H film.  相似文献   

15.
Low-pressure glow discharges of Ar or O2 gas plasmas were used to increase the wettability of low-density polyethylene (LDPE) films in order to improve their adhesion properties hence making them useful in technical applications. Surface free energies of such films were estimated by the aid of contact angle measurements at different exposure power/time combinations for a series of test liquids. Additionally, plasma-treated samples were subjected to several aging processes to determine the durability of different plasma treatments. Characterization of the surface changes due to plasma treatments were carried out by means of attenuated total reflectance, Fourier transform infrared spectroscopy (FTIR-ATR) to determine the presence of polar species such as hydroxyl, carbonyl, carboxyl, etc. groups. Furthermore, atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to evaluate changes in surface morphology and roughness. Considering the semi-crystalline nature of the LDPE film, XRD studies were also carried out to determine changes in the percentage of crystalinity. The results showed that all low-pressure Ar or O2 gas plasmas improve the wettability properties of LDPE films. Contact angles decreased significantly depending on the discharge powers and exposure times. Surface morphology was also found to vary with plasma discharge powers, exposure times, and the type of gas being used. Ar gas plasmas comparatively produced superior results.  相似文献   

16.
Diamond film deposition on silicon was explored using our newly developed graphite etching technology in a microwave plasma reactor. The effects of hydrogen flow rate on the growth rate, morphology and field electron emission properties of the synthesized diamond were investigated systematically. The growth rate and nucleation density of diamond films increased significantly with the decrease of hydrogen flow rate. Nanocrystalline diamond films were obtained with a low hydrogen flow rate (i.e. 3 sccm or lower). Diamond quality is improved and the growth rates are much higher in this graphite etching process, compared to conventional H2 + 1% CH4 gas mixture. The results suggest that diamond growth is enhanced by activated hydrocarbon radicals formed through in-situ etching of graphite by atomic hydrogen. The turn-on electric field decreased and the emission current increased with the decrease of the hydrogen flow rate. The enhanced field electron emission property of the diamond films synthesized at lower hydrogen flow rate is attributed to the decreased diamond grain size because the small diamond grains increase the electron conduction channels which facilitate the electron transport inside diamond films.  相似文献   

17.
Diamond films grown at low temperature (< 400 °C) on large area of different substrates can open new applications based on the thermal, electrical and mechanical properties of diamond. In this paper, we present a new distributed antenna array PECVD system, with 16 microwave plasma sources arranged in a 2D matrix, which enables the growth of 4-inch nanocrystalline diamond films (NCD) at substrate temperature in the range of 300–500 °C. The effect of substrate temperature, gas pressure and CH4 concentration in the total gas mixture of H2/CH4/CO2 on the morphology and growth rate of the NCD films is reported. The total gas pressure is found to be a critical deposition parameter for which growth rates and crystalline quality both increasing with decreasing the pressure. Under optimized conditions, the process enables deposition of uniform (~ 10%) and high purity NCD films with very low surface roughness (5–10 nm), grain size of 10 to 20 nm at growth rates close to 40 nm/h. Nanotribology tests result in the friction coefficient of the NCD films close to that obtained for the standard tetrahedral amorphous carbon coatings (ta-C) indicating the suitability of this low-temperature diamond coating for mechanical applications such as bearing or micro-tools.  相似文献   

18.
Nitrogen-doped diamond films have been synthesized by 100 KW DC arc plasma jet chemical vapor deposition using a CH4/Ar/H2 gas mixture. The effect of nitrogen addition into the feed gases on the growth and surface morphology and mechanical property of diamond film was investigated. The reactant gas composition was determined by the gas flow rates. At a constant flow rate of hydrogen (5000 sccm) and methane (100 sccm), the nitrogen to carbon ratio (N/C) were varied from 0.06 to 0.68. The films were grown under a constant pressure (4 KPa) and a constant substrate temperature (1073 K). The deposited films were characterized by scanning electron microscopy, Raman spectroscopy and X-ray diffraction. The fracture strength of diamond films was tested by three point bending method. The results have shown that nitrogen addition to CH4/H2/Ar mixtures had led to a significant change of film morphology, growth rate, crystalline orientation, nucleation density and fracture strength for free-standing diamond films prepared by DC arc plasma jet.  相似文献   

19.
Single-crystal diamond microneedles were extracted from (001) textured polycrystalline films. The films were produced using a plasma enhanced chemical vapor deposition (CVD) from a CH4/H2 gas mixture activated by a direct current discharge. The as-grown textured polycrystalline CVD films consist of pyramid-shaped micrometer size diamond crystallites embedded into a nanodiamond ballas-like material. The less ordered fraction of the CVD film material was removed selectively using thermal oxidation. A dependence of the diamond needle shape on the CVD and the oxidation process parameters was revealed via a computer simulation and experimental studies. Ability for mass production of the diamond microneedles of different shapes was demonstrated. The needles are suitable for various applications from microcutting tools to quantum information processing.  相似文献   

20.
Diamond films were used as substrates for cubic boron nitride (c-BN) thin film deposition. The c-BN films were deposited by ion beam assisted deposition (IBAD) using a mixture of nitrogen and argon ions on diamond films. The diamond films exhibiting different values of surface roughness ranging from 16 to 200 nm (in Rrms) were deposited on Si substrates by plasma enhanced chemical vapor deposition. The microstructure of these c-BN films has been studied using in situ reflexion electron energy loss spectroscopy analyses at different primary energy values, Fourier transform infrared spectroscopy and high resolution transmission microscopy. The fraction of cubic phase in the c-BN films was depending on the roughness of the diamond surface. It was optimized in the case of the smooth surface presenting no particular geometrical effect for the incoming energetic nitrogen and argon ions during the deposition. The films showed a nanocrystalline cubic structure with columnar grains while the near surface region was sp2 bonded. The films exhibit the commonly observed layered structure of c-BN films, that is, a well textured c-BN volume lying on a h-BN basal layer with the (00.2) planes perpendicular to the substrate. The formation mechanism of c-BN films by IBAD, still involving a h-BN basal sublayer, does not depend on the substrate nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号